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Kurzfassung

Der Zweck dieser Diplomarbeit ist die Entwicklung einer mobilen, anatomischen Bildungs-
anwendung für die breite Öffentlichkeit, welche die passive, unüberlegte Mobilgerätnutzung
zu einer aktiveren, lehrenden Nutzung mittels makroskopischer und regionaler Anatomie
verlagert. Die neue, immersive Lernerfahrung mit interaktiven, 3D, Augmented Reality
(AR) Anatomiemodellen synchronisiert diese in Echtzeit mit dem Gesicht des Benutzers.
Individuen der breiten Öffentlichkeit können durch das digitale Sezieren ihrer eigenen
Gesichtsanatomie geometrische, räumliche und textliche Anatomieeigenschaften lernen.

Immanente Eigenschaften des erstellten Lernprozesses sind selbst-gelenktes Anatomie-
lernen, weniger geistige Belastung, ein Motivations-, Aufmerksamkeits-, Konzentrations-
anstieg, länger erhalten bleibende Zufriedenheit, neues anatomisches Wissen, bessere
räumliche Fähigkeiten und ein kurzfristiger Leistungsgewinn verglichen mit traditionellem
Lernen. Die hohe Komplexität der menschlichen Anatomie beschränkt die synchronisierten
Anatomiemodelle auf den Kopf. Nichtsdestotrotz können alle menschlichen Anatomie-
modelle als Two Dimensional (2D) oder AR Three Dimensional (3D) Darstellungen
betrachtet werden, jedoch ist nur die Kopfanatomie mit dem Kopf des Benutzers syn-
chronisiert.

Die beantworteten Forschungsfragen sind “Wie kann interaktive AR zur anatomischen
Bildung der breiten Öffentlichkeit genutzt werden?” und “Wie viel und welche Anatomie
kann in welcher Zeit mit der entwickelten Anwendung erlernt werden im Vergleich
zu Arbeiten die am neuesten, technischen Stand sind?”. Head Pose Estimation (HPE)
verbindet AR verwaltet durch das Framework ARCore mit 3D Anatomiemodellen von
Body Parts 3D (BP3D) und anatomischen Informationen von Foundational Model of
Anatomy (FMA), um die breite Öffentlichkeit in der Anatomie zu bilden. Empfohlene
Anforderungen aus der Fachliteratur werden erfüllt in der entwickelten Anwendung namens
ARnatomy, welche eine zusammengefügte, anatomische, interaktive Lernerfahrung ist. Das
Entwicklungsergebnis wurde in einer informellen Studie mit acht Teilnehmern evaluiert,
welche zeigte, dass mobile AR zur anatomischen Bildung der breiten Öffentlichkeit
genutzt werden kann. Sieben der acht Teilnehmer gewannen anatomisches Wissen in
geometrischer, räumlicher und textlicher Form.
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Abstract

The purpose of this master thesis is the development of a mobile, anatomical education
application for the general public, which shifts the passive, unthoughtful mobile device
usage to a more active, teaching usage by utilizing macroscopic and regional anatomy.
The new, immersive learning experience with interactive, Three Dimensional (3D), Aug-
mented Reality (AR) anatomy models synchronizes the models in realtime with the user’s
face. Individuals of the general public can digitally dissect their own facial anatomy to
learn geometrical, spatial, and textual anatomy features.

Immanent features of the created learning process are self-directed anatomy learning,
less cognitive load, a motivation-, attention-, concentration increase, longer preserved sat-
isfaction, new anatomical knowledge, and better spatial abilities compared to traditional
learning. The high complexity of the human anatomy restricts the synchronized anatomy
models to the head. Notwithstanding, all human anatomy models can be viewed as Two
Dimensional (2D) or AR 3D renderings, whereby only the head anatomy is synchronized
with the user’s head.

The answered research questions are “How can interactive AR be used in anatomical
education for the general public?” and “How much and what anatomy can be learned in
which time with the developed application compared to state of the art works?”. Head
Pose Estimation (HPE) links AR managed by the framework ARCore with 3D anatomy
models from Body Parts 3D (BP3D) and anatomy information from Foundational
Model of Anatomy (FMA) to educate the general public in anatomy. Recommended
requirements from professional literature are fulfilled by the developed mobile application
named ARnatomy, which is a jointed, anatomical, interactive learning experience. The
development result has been evaluated in an informal study with eight participants, which
showed that mobile AR can be used for the anatomical education of the general public.
Seven of eight participants gained anatomical knowledge in a geometrical, spatial, and
textual form.
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CHAPTER 1
Introduction

Three main information technologies influencing our perception of reality exist. Mixed
reality fuses the reality with the virtual one, Virtual Reality (VR) replaces the whole
reality, and Augmented Reality (AR) partially converges VR into reality for better
immersion and interactivity [1, 2, 3]. Within this thesis, AR is utilized in a mobile device
application for the exploration of anatomy on the user’s own body. A mobile application
with face-synchronized AR anatomy learning capabilities to educate the general public
was inexistent before this master thesis. The AR superimposition is composed with texts
as well as models from a flat file collection, namely the Body Parts 3D (BP3D) [4], and
a Database (DB), namely the Foundational Model of Anatomy (FMA) [5]. Section 1.1
treats the motivation to write this master thesis, Section 1.2 treats the problem definition
and aim of the work, Section 1.3 treats the methodological approach and contribution,
and Section 1.4 treats the structure of this master thesis.

1.1 Motivation

The Flynn effect is the steady Intelligence Quotient (IQ) increase of the population
in the 20th century [6]. However, an inversion started in the final decade of the last
millennium and is caused environmentally. The environmental dependence of the Flynn
effect coheres with other IQ decline hypothesis, a quality decline in education, high
mass media consumption, unhealthy nutrition, and poor health, as well as an increase of
immigration [7], media exposure, and mobile device usage [8, 9, 10]. The increasing time
of mobile device usage can be utilized fruitfully for digital education of the general public
and to shift passive, unthoughtful mobile device usage to a more active, autodidact one.
The key of mobile media consumption is what media with which mindset is consumed to
lower or even resolve the harmful effects of IQ decline [8, 9, 10]. In this master thesis,
models and texts focus on anatomical education of the general public with AR on mobile
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1. Introduction

devices.

A fundamental understanding about anatomy is essential for doctors, nursing personnel,
and other medical employees to conduct their work [1]. During the lifespan of individuals
from the general public, topics, issues, or interest in the own health and anatomy may
arise [1]. AR on a mobile device can bring enlightenment about the functionality of
the human body to the general public and particular to patients. Patients with more
knowledge about anatomy have more benefits. Studies [1, 11, 12] show an improve-
ment in the communication between doctor and patient before and even more after
the diagnosis. Successful information exchange during consultation is positively linked
with patient compliance during therapies and affects the overall treatment success [11, 12].

The medical staff can also use the developed application namened ARnatomy during
a consultation to show anatomy to patients on the patient’s own body. Additionally,
professional treatment with patient involvement becomes more popular and ought to be
coupled with fundamental anatomical knowledge of the patient for a satisfying outcome
[13]. The information exchange between patient and the medical staff can be facilitated
by using digital, anatomical depictions causing less anatomy abstraction in the minds
of patients. A digital depiction of anatomical structures in AR can be separated into
different layers, has less discomfort, and less cadaveric complexity as real anatomy [14].
Digital anatomy can have more interactivity than Two Dimensional (2D) or physical
models, multiple Anatomy Perspectives (APs), wider access, and lower costs [14] than
real anatomy.

Constructivism and embodied cognition is a major learning theory and states that active
learning constructs spontaneous knowledge as well as lower cognitive load than traditional
learning [13, 15]. Interaction with virtual anatomical objects is analogous to the kind
of exploration users would have with real anatomical objects. The resemblance and
association to the embodied cognition and learning benefits from own body movements as
perceptual and motoric insights, which enhance not only the learning process in general,
but also with interactive AR.

Correspondence between the depiction of the real and virtual world are important for the
realism of AR. Interaction with the virtual objects enriches User Experience (UE), allows
user navigation, and enables manipulation. The interaction with virtual objects designed
for learning influences knowledge gain positively and is more satisfactory compared to
textbook images [16]. Interactive Three Dimensional (3D) anatomy systems have shown
substantial learning progress for medical students, especially in understanding anatomical
relationships and spatial visualization [13, 16]. The progress originates from the direct
manipulation, which is better than passive viewing for learning anatomy in a 3D VR
environment [17]. In this master thesis, memorization is categorized in three different
terms. Short-Term is defined in the Oxford dictionary as occurring over or relating to
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1.2. Problem Definition and Aim of the Work

a short period of time [18], and is in this master thesis considered to be shorter than a
day. Medium-Term is defined in the Oxford dictionary as occurring over or relating to a
period of time of moderate length [19], and is in this master thesis considered to be less
than a month but longer as short-term. Long-Term is defined in the Oxford dictionary as
occurring over or relating to a long period of time [20], and is in this master thesis consid-
ered to be more than a month. The interactive 3D anatomy systems are not superior to
traditional learning in the matter of medium-term and long-term memorization. Anatomy
education systems have a short-term performance improvement confirmed by Preim and
Saalfeld [13], but lack evidence for their medium-term and long-term impact on learning
[16]. Chen et al. [21] performed in the field of medical mixed reality a search for papers
considering the following topics; treatment, education, rehabilitation, surgery, training,
interaction, mobile, display, registration, and tracking. The topic mobile had the least
publications. Most research of the influence on learning with AR has been conducted on
medical students. No mobile application has face pose estimation, an anatomy superimpo-
sition as AR with Head Pose Estimation (HPE), and interaction with rendered anatomy to
navigate, select, and display anatomical information, which empowers embodied cognition.

The purpose of this master thesis is to generate ARnatomy for mobile devices, which
provides access for the general public to the education of anatomy with all the afore-
mentioned benefits of AR. Albeit the contained scientific anatomical information [4, 5]
in ARnatomy, its private usage or its usage in the medical field can only educate and
support users [1]. ARnatomy cannot replace the consultation of a physician.

1.2 Problem Definition and Aim of the Work
The mobile device usage along with time spent on the phone increases among the world
population, whereby the former is reciprocal to the user’s available cognition [8]. This is a
problem for every mobile device user, since cognitive functioning is influenced negatively
by mobile devices [9]. From the overall mobile device usage, media consumption has 95
% and within that 95 % social media is consumed the most [10]. Education on mobile
devices has an active user involvement requiring more cognition compared to a passive
mobile device usage. An Android mobile application with 3D, anatomical AR educating
the general public is inexistent. The necessary technologies needed to build an immersive,
mobile, AR education application exist. HPE, Google’s ARCore [22] AR framework on a
mobile device, an extension of ARCore namned Sceneform [23], DBs with anatomical
texts, DBs with anatomical models, and many APs on anatomy [13] are the required
technologies conflated as one application. Based on the aforementioned information, this
master thesis answers the following research questions:

1. How can interactive AR be used in anatomical education for the general public?

2. How much and what anatomy can be learned in which time with the developed
application compared to state of the art works?
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1. Introduction

The application name ARnatomy is a portmanteau of one abbreviation of the used tech-
nologies and the topic anatomy. Capturing a human face triggers the AR superimposition
enabling the user to interact, learn, and explore anatomy via simple taps, swipes, and
pinch gestures on all 3D axes with one’s own mobile device. A textual search is included,
the entered characters show related anatomy suggestions and clicking a suggestion opens
a detailed view. In the detailed view, the anatomical synonyms and definitions can be
read and the hierarchy can be viewed. The anatomical hierarchy can be explored by
using simple up or down popup menu taps concerning the previously found anatomy. At
any time, the created anatomy hierarchy loaded through exploration can be viewed as
AR visualization.

To achieve minimal latency, model loading from the DB, model rendering, model anima-
tions, and User Interface (UI) animations are all executed as asynchronous background
threads synchronizing each other on attachment points to decrease the dangers of UI
thread interruptions and bad UE. Asynchronicity is proportional to source code com-
plexity, both depend on the number of asynchronous tasks executed and the single task
complexity. With the implementation, the user can educate oneself about bones, muscles,
organs, blood vessels, and nerves of the head. Further anatomical systems, regions, and
layers concerning the rest of the body or lymph system, their circulation, et cetera are
reserved as future work due to time constraints.

Anatomy rendering, AR, interaction on mobile platforms, their restrictions, and inherent
benefits for learning require efficient communication and integration between each other,
elsewise latency influences the interaction, AR experience, and learning process negatively.
HPE, model mapping, and AR rendering have not been used together in an AR mobile
application. Intuitive interaction and anatomical information representation are important
for usability, learning experience, and progress and this master thesis aims to empower
all latter three.

1.3 Methodological Approach and Contribution

The methodological approach consists of five major steps executed in sequential order.
First, different APs on anatomy were examined to identify the macroscopic and regional
APs [13], which are best fit for the education of the general public through a mobile
AR application. Second, a model DB and textual DB was searched to have anatomical
content and information in the application. Preprocessing of model DB and textual
DB was a normalization and conflation to an own DB comprising the whole human
anatomy hierarchy and all hierarchical information. Third, state of the art research
about existing anatomy education tools, effect on learning of educational tools, learning
of anatomy with education tools, effect on learning of AR, AR technology, HPE, all
their features, and their interoperability. Based on the conducted research, the design of
the application encompassing UI, model interaction, and the mental picture of anatomy
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1.3. Methodological Approach and Contribution

created through interaction with anatomy and learning. Fourth, implementation and
testing of the application with the frameworks of ARCore [22] and Sceneform [23] as well
as the DBs BP3D BP3D and FMA [5] with consideration of software design patterns,
guidelines, and designs for the Back-End (BE) and Front-End (FE) . Fifth, Informal
Evaluation (IE) of the developed application with two case studies and questions af-
terwards for all eight participants. Visual facilitation of the complex human anatomy
and its rendering is beneficial for the learning and comprehension of anatomy. Illustra-
tive rendering can create meaningful renderings of anatomical structures and objects
containing spatial and functional information of themselves as well as their proximity
[24]. Compared to conventional rendering, more visualization opportunities for regions
of interest are possible. A distinction is made between low level illustrative render-
ing, boundary emphasis and saliency, and high level illustrative rendering, visibility
adaptions trough transparency or removal. For a clear view and orientation, high illus-
trative rendering is utilized along with external labels [25] for the rendering of AR models.

With automatically facial landmark tracking, interactive models are rendered in AR
allowing the user to perform a digital dissection [26] and an assemblage for discovery-
based learning [27]. Discovery-based learning is active learning and exploration, which
constructs spontaneous knowledge according to the major learning theory constructivism
and embodied cognition [13, 15]. Active learning through interaction and deep immersion
through AR bring a higher user satisfaction, increased attention, and a more ascending
learning curve [13, 16, 17, 28] for the target group being interested individuals of the
general public. Alternatives would be non-mobile anatomy education tools without
direct interaction on the models, without AR for higher immersion, and without any
synchronization with the user’s face or body. Examples of other anatomy education tools
lacking one, two or all previously mentioned features with synchronization of the user
body, but without access for the general public, e.g. mirracle [29] and WithTeeth [30].
Anatomy education tools without synchronization of the user body, but with access for
the general public exist too, e.g. Zygote Body [15], The Online Anatomical Human [31]
and The Open Anatomy Browser [32].

The main difference and likewise advantage of the developed application to the afore-
mentioned applications is the included constructivism and embodied cognition [13, 15]
paired with direct, interactive manipulation and digital dissection of AR anatomy. In
no other anatomical education application, the user can interact with anatomy models
synchronized with the users’s own body, which achieves a higher level of immersion. A
minor, but still unique difference to other anatomical applications, is the application
availability for the general public on a mobile device. No additional setup, as Microsoft
Kinect in mirracle [29] for example, is required to start the developed application. An-
other minor difference to other anatomical applications is that the user can switch
easily between three activities displaying first, the synchronized AR showing the overall
facial anatomy, second, the single, isolated view of only one anatomy object, and third,
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1. Introduction

the detailed textual anatomy hierarchy view. Each single of the three activities was
designed to create a single mental picture and to amend it through the switching to one
of the other activities. Creating only one mental picture for the subject to be learned
results in faster and a more efficient learning than creating multiple mental pictures
for the same subject [33]. The anatomical education with the developed application
should be easy, interesting, and enlightening. Participants in Preim and Saalfeld [13]
showed appreciation for up to date anatomical information, i.e. high resolution render-
ings, textual keyword search, and automatic suggestion. The aformentioned anatomical
information is included in the application for high usability and UE being a highly
interactive, intuitive, non-complex UI for a low complexity and a low distraction from
learning. To meet the requirements determined by Preim and Saalfeld, the newest 3D
flat file model collection BP3D [4] with the attributes free, scientific, and anatomical
is used for anatomy model rendering. The contained models of BP3D have an index
linking them to FMA [5], a medical anatomy ontology DB. The BP3D and the FMA are
normalized and migrated to constitute an own, single DB encompassing models along
with their hierarchy, labels, synonyms, and definitions. Minimum latency is the basis for
unrestricted, immersive usage preventing user dismissal at the beginning [34]. Building
on top of minimum latency, a non-distracting, non-complex, intuitive UI aims for an inter-
esting UE empowering user satisfaction, focus, and immersion for positive learning effects.

For low computational demand and to ensure a standard usability on a mobile device it
is recommended to develop aligned to the Google Java Style Guide [35], Google Developer
Policies [36], and Google Material Design [37]. The Java style guide ensures future
readability and maintainability of the source code. Adherence of additional developer
policies helps to include proven practices in the field and compliance with the guidelines
and rules of Google Play [38] and to ensure a sparse quality standard for the BE. Similar
for the FE, adherence with the material design creates an appealing UI proven in practice
in many available applications as Threema [39], Airbnb [40], Asana [41], and many
others. Maybe, this mobile device application will be available someday on Google Play.
Compliance with the aforementioned guidelines and policies will be beneficial on the
upload to Google Play as less issues, delays or code refactoring will hopefully be necessary.

Simple software design patterns, namely factory, singleton, observer, and builder patterns
[42], are used. The integration of simple patterns is easier than more complex software
design patterns [43, 44], because of the code structure from Android projects and the
one from ARnatomy. An IE [45] with eight participants was conducted with ARnatomy
to receive feedback on intuitiveness, usability, functionality, discovery-based learning
[27], learning effects, gained anatomical knowledge, and to discover design flaws. Two
case studies specifically designed for ARnatomy’s IE had to be executed by all eight
participants, who received brief instructions on what but not how to do the single case
study components. The intention was to observe, if a participant can orient oneself in
the application, is able to perform discovery-based learning, self-directed [46] anatomy
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1.4. Structure

exploration, and to get more critic feedback in the interview afterwards. The contribution
of this master thesis is to provide access to anatomical education for the general public
with an AR mobile education application synchronizing interactive models with textual
information through HPE with the user’s own face for an immersive learning experience
benefiting from constructivism and embodied cognition [13, 15].

1.4 Structure
The remaining master thesis consists of Chapters 2 to 7 and an Appendix. Chapter 2 treats
related work as state of the art concerning the topics AR, its medical applications, mobile
DBs, and HPE. Chapter 3 treats the methodology of the preparation and execution
of application implementation. Chapter 4 treats the implementation from all used
technologies and their mutual effect on each other. Chapter 5 treats the result of the
development, its limitations, IE design, and the IE. Chapter 6 discusses the development
result, the effects on learning, the evaluation result delivered by the IE, consisting of
two case studies and an interview, answers thereby the two research questions, and
contains the conclusion of this master thesis. Chapter 7 treats possible improvements,
amendments, development directions, and application fields as future work. Chapter
A contains all raw BP3D, all FMA column names, all projects, all issues created on
Github, which affected this thesis as hyperlinks, and all IE questions. All abbreviations
are written in their full length at their first occurrence in each chapter.
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CHAPTER 2
Related Work

The literature on Augmented Reality (AR), its subcategories, effect on education, usage
in the medical field, face tracking, and Database (DB) technologies influenced the
implemented application and gave innovative ideas for future work. The aforementioned
topic order relates to the technology usage within this project and is intended for best
comprehension. Section 2.1 treats the state of the art of AR encompassing AR in
general, with the usage of AR in anatomy education, and the effects of AR on user
education. Section 2.2 treats anatomy applications without AR. Section 2.3 treats
anatomy applications with marker-based AR and markerless AR. Section 2.5 treats
face tracking encompassing face recognition and Head Pose Estimation (HPE). Section
2.4 treats the anatomical model datasets found. Section 2.6 treats mobile DBs and
their features and performance in Create, Read, Update and Delete (CRUD) operations.
Section 2.7 treats current AR frameworks and gives an overview of their capabilities.

2.1 Augmented Reality

The first publication about AR was from Azuma in the year 1997 [3], but technology was
not as far as the imagination of the researcher. Beside AR, other continuums with one
or multiple virtual parts were imagined and are created today. First, virtuality, mostly
referred as Virtual Reality (VR), is generated by software and completely digital and
virtual without any real objects. Second, Augmented Virtuality (AV), where a human
or a real, non-digital or non-virtual object is placed inside a virtual environment [47].
Third, AR where virtual objects are placed inside a real environment creating an illusion
of a coexistence from virtual objects in reality. Fourth, the unaltered, uninfluenced,
non-digital, non-virtual reality itself perceived solely by our own, human senses without
any other technology. In AR, the reality is captured by a camera and perceived through
a display. The captured scene on the display is extended, amended or augmented by
virtual objects rendered as superimposition. In other words, an illusion of a coexistence
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between virtuality and reality is manifested. Mixed reality is a hypernym for AV and AR
as depicted in Figure 2.1. Over time the realization of AR became possible on mobile
devices, which can deliver a continuous video stream through their integrated cameras to
a display wherein virtual models can be rendered.

Figure 2.1: Notions between virtuality and reality [48, 49].

With more computational resources of mobile devices and advanced environment tracking
techniques, AR became first popular in companies developing products for the general
public [50]. Challenges are realtime rendering and enterprise applications to make the
technology more known with dedicated AR ecosystems as well as platform economy. Key
factors for the success of AR are easy to use ecosystems, support for developers, and
users who use the technology actively and do not have the technology just installed on
their devices [50].

AR requires landmarks to be tracked and registered for orientation. Currently, two
approaches named marker-based and markerless exist to maintain the realistic illusion
and immersion created by AR. By relying on metric data from the mobile device’s camera,
sensors or data created by the tracking system, a plasticity of augmentations facilitating,
guiding or adapting to user perception can be created programmatically [51, 52]. Within
the context of AR, plasticity describes the application adaption to the environment,
platform, content or the user. The diffuse and spectral lights used in rendering can
be adapted to the detected ambient light intensity to create higher realism and more
immersion in the captured scene.

Other AR plasticity are possible to change the User Experience (UE) or the AR based
on sensory information and not only on user interaction. Adaptive illumination on AR
renderings can be created, short distances to models can change model transparency
to show its insides, details, display an info text, highlight the model by scaling [51],
displaying its outlines, blurring the background, fade the background colour to greyscale,
change the sound output volume, or utilize other effects. Sound recorded by the mobile
device can change the rendering of models in all possible ways mentioned above. AR
plasticity becomes more and more important as single AR applications transit on and on
from one particular task to a persuasive UE [52]. AR can only be as good as the used
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models, their rendering, and registration technology, especially in application cases where
precision is needed as in the medical field, e.g.. Subsection 2.1.1 treats the state of the
art in general marker-based AR without anatomy, Subsection 2.1.2 treats the state of
the art in general markerless AR without anatomy, and Subsection 2.1.3 treats the state
of the art concerning the effect of AR on learning.

2.1.1 Marker-Based Concepts and Applications

Marker-based AR needs fiducial markers in the real world detected by a camera. The
Oxford dictionary defines fiducial as (especially of a point or line) assumed as a fixed
basis of comparison [53] for an algorithm performing fiducial landmark tracking. In the
AR context, fiducial refers to an accepted Point of Reference (PR) from the application
meaning markers can be nearly anything from what camera position and rotation in space
can be derived by a corresponding marker detection algorithm [54, 3, 55, 56]. Knowledge
of camera and marker position enables rendering objects relative to the current camera
perspective resulting in the illusion of AR in the device display. The act of fiducial
marker tracking for AR registration formed the term marker-based AR.

Within the marker field, a distinction between different marker-based technologies is
made. Marker-based technologies can be barcode-based, template-based, and model-
based, whereby all three technologies can be used for AR registration. Barcode-based AR
markers can be One Dimensional (1D), e.g. Universal Product Code (UPC) code depicted
in Figure 2.2 and European Article Numbering (EAN) codes, and Two Dimensional (2D),
e.g. Denso’s Quick Response (QR), International Data Matrix’s Data Matrix, United
Parcel Service (UPS)’s Maxi Code, Zebra’s Ultracode, and colourZip Media’s ColourCode
In Figure 2.3 [57].

Figure 2.2: Example of a 1D marker [58], which can be used for AR orienting its renderings
relative to the 1D marker position in the captured scene by the device camera.

The first barcode generation has been 1D, depicted in Figure 2.2, and is still widely used.
Black lines with different widths on an arbitrary background being the zero and one bits
form a certain geometrical pattern, which can converted in a binary format for recognition
and decoding. Recognition of 1D barcodes is fast for machines due to their simple design,
but comes with disadvantages, visual entropy encoding limitations compared to its
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successor, the second barcode generation, no visual information for humans on first sight,
and unreadable by untrained humans. The second barcode generation has been 2D and
has the advantage of a higher entropy compared to 1D barcodes, more information, more
information density, and more data types are supported. The third barcode generation is
the second one in colour, has even more entropy than single coloured 2D barcodes, and is
designed for one single barcode of the third generation within an observed area. Nearby
recognition is assumed and therefore coloured 2D barcodes as well as image codes are
susceptible to scale changes or distortions [57]. AR markers have a higher distortion
resistance, which results in a more tangible interaction and better recognition stability of
tracking software up to 30 markers. The entropy of AR markers had to shrink in order to
gain more stability against rotation and compared to barcodes, the information capacity
is small. In Figure 2.3 different markers, their recognition and decoding process, depicted
as arrows, show different marker types.

Figure 2.3: Left: Decoding procedure and direction of the data matrix inside a 2D marker.
Middle: Decoding procedure and direction of the data matrix inside a QR code. Right:
Decoding procedure and direction of the data matrix inside a colour code [57].

One may think by observing Figure 2.3 markers have to be square or rectangular, but
markers can be any shape a tracking algorithm can detect, e.g. circles, triangles or a
company logo can also be used as marker. For robustness with fast detection black and
white markers having a high contrast and a bold frame are the majority [59]. Barcode
and AR marker technology was fused to create ColourCodeAR [57] to have the benefits
of a higher encoding entropy and better tracking. Continuous recognition and tracking of
AR markers is needed for smooth application execution and a good UE. A small marker
with a high recognition range, meaning easy and fast detection, is the requirement, which
constrained the search for the best barcode technology used for the combination with
AR.
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The novelty of ColourCodeAR [57] detection is that a lot more marker identifications
can be made compared to barcodes not using different colours. ColourCodeAR can
contain up to 13 times more information than QR codes and the smallest detected
marker from a fixed 50 centimeter distance can be a 15 milimeter square. The smallest
detected ColourCodeAR marker from a varying distance can be a 3 milimeter square
and the detection distance is enlarged by approximately 10 centimeters. ColourCodeAR
increments the side angle from 55 to 90 and has a detection range magnification from 30
to 90 side viewing angles [57]. Any markers with angles from 30 to 55 cannot be detected
with standard colour codes but with ColourCodeAR, they can be detected.

The improvements result in more robustness and more performance speed compared to
other colour coded markers as well as more supported scanning positions. Users tend
to start the scanning from the most comfortable scanning device position for the users
but not for the scanning process. Quad vertex detection detects the vertices of a quad
and ColourCodeAR uses the quad vertex detection algorithm in each frame. Previous
quad vertex positions are reused on a tracking loss [57], and if the usage of previous quad
vertex positions is successful, the colour code decoding with the Kanade-Lucas-Tomasi
(KLT) feature-tracking algorithm is performed.

Template-Based or template markers are image markers and markers depicting a silhou-
ette. Within template-based markers, features are extracted and compared with stored
marker templates form a DB. Template-based markers require a sophisticated design and
implementation, since their correct scanning is often unreliable through unconsidered
similarity properties. Markers concealing their contained information by stereograms
with robust decoding for AR are a new emerging field founded by Nguyen and Yeap
[59]. A stereogram, autostereogram or magic eye picture is a 2D image, which displays
a hidden, floating object when viewed from a particular angle. Viewing from a partic-
ular angle is also known as cross viewing or parallel viewing. The stereogram consists
of reiterated patterns, where each pattern’s distance to a view point is proportional
to another view point. The angle between the two view points results in a different
focus point behind the image for each single view point, which creates the perceived
depth illusion of stereograms. Most stereograms are designed for the mean view point
distance between human eyes, which can be considered as the aforementioned view points.

Reading information with a computer from a stereogram is an ill-posed inverse optical
problem [59] because of the matching similarity and structural ambiguity of the reiterated
patterns used. The stereogram used as marker for AR can be printed on a regular 2D
black-border square with an 10 % thick border for recognition. The residual 90 % of
the image is again separated in 50 and two 25 % areas, where the 50 % is a fixed center
image with the stereogram. The two 25 % images are left and right reiterated greyscale
overlay pattern halves creating the stereogram beside the fixed center image as depicted
in Figure 2.4.
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Figure 2.4: Creation process of a stereogram [59].

Advantages of stereograms [59] are the informative, meaningful, human-readable center
image, the information inside the two side images readable by a computer, and cen-
ter image as well as side image independence from each other. Further advantages of
stereograms [59] are the encoding support of multiple 1D or 2D barcodes, decoding
with approximately 95 % similarity to its original, no discrepancy on high image blurs,
contrast or brightness levels, heavy raindrops decrease the similarity to 85 %, sand
hard noise, being image disruptions, decreases the similarity to 82 %. Disadvantages is
more generation complexity, more computational demand, and more expensive colourful
printing ink on colour images. The effect when left or right information image parts
are missing through occlusion or partial damage was not treated by Nguyen and Yeap
[59]. The AR StereoTags can transport information to their users who only have to
take a glance at the markers to know their context or contained information, if the
picture represents the content of the marker or the marker’s context. Companies could
use StereoTags as additional advertisements and information transportation for users
or as shipment data transportation for delivery services. AR is not limited to indoor
environment, outdoor AR uses Global Positioning System (GPS) for orientation, and
device sensors to know in which direction the current Field of View (FoV) of the camera
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is aligned [60]. The location accuracy and the users perception can be improved, even
when the target outdoor object is occluded by another object, especially in urban envi-
ronments. In some cases, AR reportedly compromised the depth perception negatively.
Images of physical objects, being in urban environments buildings or statues, can be
used as fiducial AR markers. The object’s exterior is photographed beforehand and the
extracted features are then matched with the features extracted from the current video
stream. If a match for the physical object is found, the corresponding AR content is shown.

Small environmental illumination changes can cause severe malfunctions of outdoor AR.
The environmental illumination variables, as object photograph date and time, object
illumination, current illumination inside the video stream, viewing angles, headlights of
cars, weather as rain, snow, dust, smog, camera light sensor, and camera configurations,
influence the oudoor AR registration process [60]. During the night, the influence of all
variables on the oudoor AR registration process is increased. Kasapakis et al. [60] make
outdoor marker-based AR more robust by taking sensitivity of illumination from outdoor
AR into account. If the normally executed physical object registration from outdoor
AR fails, an FoV estimation is activated as additional physical object registration. The
physical object in the urban environment is seen, an accurate AR FoV projection upon
the actual side of the detected, physical object is performed via geolocative raycasting as
depicted in Figure 2.5. In geolocative raycasting, rays are sent from the GPS location of
a device into the direction of the device’s magnetic sensor [60]. If the ray intersection
points hit building polygons, the device’s FoV can be estimated. Building polygons are
polygons of buildings in previously captured images stored on an DB.

Figure 2.5: Outdoor AR: a) Polygon side red center adjustment. b) AR content shown
due to correct building identification. c) No content due to incorrect FoV not hitting the
center of the buildings facade. d) False positive match as a) due to perspective distortion
[60].

The geolocative raycasting should hit the center of a physical object facing to the device
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for a high FoV estimation precision. With the FoV estimation, inaccurate GPS locations
can be counterbalanced and sometimes be recognized in the first place. Only buildings
with clearly visible sides, excluding smaller built-in facade objects, can be detected with
geolocative raycasting. With geolocative raycasting, the illumination fluctuations in
urban environments are decreased [60]. Other marker-based AR registration approaches
are model-based AR, which are not to be confused with markerless, also known as
feature-based, AR treated in Section 2.1.2. In model-based AR registration, the system
tries to register one or multiple models with the camera-captured scene by comparing
extracted features with preprocessed ones from all supported models [56]. The registered
model features serve as fiducial markers for model-based AR rendering.

As clear differentiation between model-based AR, marker-based AR, and markerless
AR, model-based AR is considered to be a subcategory of marker-based AR. Markerless
AR generates own, structured features from the video stream, as coordinate map for
example, and does not use any preprocessed model features as model-based AR does.
The classification consequence from the differentiation between model-based AR, marker-
based AR, and markerless AR is that the paper from Vlaminck et al. A Markerless 3D
Tracking Approach for Augmented Reality Applications [61] has the word markerless in its
title but performs model-based AR and is therefore treated in this section. Time of Flight
(ToF) cameras measure distances with the time of flight method. Light impulses are sent
and the camera measures the time of an impulse to come back to the camera from an
object. By knowing the speed of light and the flight time of a light impulse to come back,
the distance from the camera to the object can be calculated. Depth information from a
handheld sensor, mimicking the view of a head-mounted Time of Flight (ToF) camera, is
used to calculate the position of the sensor relative to the observed model as depicted in
Figure 2.6.

Figure 2.6: Left: The object in reality. Right: The generated model ground truth used
for AR registration [61].

A ToF camera measures the distance, i.e. depth information, to an object by emitting and
receiving light impulses. The depth information registered by the ToF camera gives an
inaccurate camera pose relative to the observed object. Due to the inaccurate determined
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camera pose, the derived view area of the model is also inaccurate. Ppreprocessing
in the form of a full model laser scan and further scan data processing is required for
more accuracy. A full object laser scan creates the object’s Three Dimensional (3D)
model. Surface elements (surfels) is in 3D computer graphics an alternative to polygonal
modeling. An object is represented by a dense set of points or viewer-facing discs holding
lighting information. From the a point cloud of object’s 3D model surface element (surfel)s
are created and utilized as assistance to gain speed and accuracy in localization and
orientation [61]. The latter is achieved though creating an octree of the point cloud where
each level has a lower resolution. On each depth scan an octree traversal is performed
through the different resolutions until the actual viewed area with a resolution down
to one centimeter is found. The one centimeter resolution is sufficient to calculate the
viewed area of the model. Further scans utilize the previously known location and search
in the current and subtrees first for a faster view area location and orientation.

The previousy treated preprocessing of a 3D model and a full object laser scan emphasizes
the model-based and rather complex fiducial marker-based AR tracking. Vlaminck et
al. [61] compare their approach with actual markerless AR tracking technology, namely
Large Scale Direct - Simultaneous Localization and Mapping (LSD-SLAM) and Oriented
Features from Accelerated Segment Test (FAST) and Rotated Binary Robust Independent
Elementary Features (BRIEF) Simultaneous Localization and Mapping (ORB-SLAM),
treated later in Subsection 2.1.2. In the benchmark video material the 3D Computer
Aided Design (CAD) models are missing for the Vlaminck et al. [61] solution making
the accuracy and speed inferior to LSD-SLAM and ORB-SLAM. A detailed evaluation
with the state of the art is impossible, since static laser scans of the physical accessible
industrial machinery used is currently unavailable. The performance is acceptable for
AR applied in industry and on machinery, where digital plans of the used machinery are
known. One application case may be the guidance of a layman without any knowledge
about his task with precise visual instructions [61].

An advantage of the approach by Vlaminck et al. [61] is that environments with low or no
illumination have no impact on the performance due to the use of solely depth information.
But relying on depth sensor is a disadvantage too, most standard mobile devices in the
year 2019 still lack depth sensors shifting model-based AR registration approach further
into the industrial field of application. The newest registration technologies in AR are
markerless being one of the most difficult and important technologies in the AR field, due
to its superior performance in rotation, orientation, lighting, and partial superimposition
detection compared to marker-based AR [2].

2.1.2 Markerless Concepts and Applications

The registration process of markerless AR depends on real world information or natural
features, which allow an application to create a higher immersion due to the lack of
fiducial markers as required by marker-based AR [2]. A fiducial marker has interactivity

17



2. Related Work

limitations, decreases the intrinsic immersion in AR, and draws the users attention away
from the application and its content to the markers. Since a marker only serves as fiducial
point for the AR registration, but has no contribution to content, application logic, nor
immersion, the user can just to start a markerless AR application without preparation,
e.g. placing a marker somewhere. The diffuse sunlight of a grey sky is sufficient for
markerless AR, but dark places where no texture can be detected by the AR registration
process are still a problem. Observing AR from the software engineering perspective,
marker-based AR is less complex than markerless AR, since recognition and registration
rely on the marker detection in marker-based AR instead of the feature detection in
markerless AR. Markerless AR technology must generate a precise, virtual, 3D map with
coordinates from natural features to eliminate latency and rendering displacements.

The 3D map generation in markerless AR is also called registration as in marker-based
AR. The 3D map coordinates make the calculation of the camera pose and the positioning
of AR models possible. The latter are realistically positioned as superimposed illusion
seen through a display. For the 3D map, iterative recognition refinements, sequential
coordinate updates, relocation on tracking loss, loop closure and error corrections are
possible [62, 63, 64, 65, 66]. As literature publications, the complexity of both approaches,
their extrinsic as well as intrinsic problems suggest, markerless AR was researched and de-
veloped after marker-based AR [3, 47, 56]. Depending on the implementation and usage of
the extracted features, markerless AR can be more flexible and faster as marker-based AR.

Observing AR from the user perspective, Brito and Stoyanova [54] researched the effect
of marker-based and markerless AR technologies on the user. The user arousal when
interacting with marker-based and markerless AR is the same but the latter created more
positive facial reactions. Positive reactions are related to the easier setup of markerless
AR without any third objects, i.e. markers. Starting markerless AR is easier as starting
marker-based AR and appears to the user more intuitive and more integrated in the real
world. Markerless AR has consequentially a higher interactive experience as marker-based
AR, and if the user is familiar with the rendered content, the user knowledge about the
content and markerless AR symbiotically cause a better UE [54, 56]. In other words,
markerless AR has a higher associated usability, and content familiarity reinforces the
effect magnitude.

One advantage of marker-based AR is the easier content relocation, a user just has
to position the marker somewhere else and the content follows accordingly [47]. In a
markerless AR application, the marker positioning is considered to be a feature, which has
to be programmed intentionally. Users interacting with markerless AR rendered products
tend to recommend the product or brand on a higher rate. The higher product rate may
reside in the higher associated usability and partially comes from the higher suggested
innovativeness of the product by markerless AR [54]. All the aforementioned disadvan-
tages of marker-based AR along with the advantages of markerless AR contributed to the
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development decision to use markerless AR in this master thesis. Visual Simultaneous
Localization and Mapping (V-SLAM) [64] in general generates a continuously updated
map of extracted feature points from a camera video stream of an unknown environment
and provides therefore a coordinate system that can be used for camera location and
AR model positioning. Compared to the state of the art approaches in marker-based
and markerless AR registration, 3D map information generated via ORB-SLAM [67, 64]
achieves higher performance and higher accuracy. The two techniques FAST and BRIEF
constituting Oriented FAST and Rotated BRIEF (ORB) of ORB-SLAM have high per-
formance and low computational demand. FAST is used for the search of corner key
points who match visual features in realtime detection systems. Hence, FAST [68] is well
suited to slove the AR registration problem, which is the tracking of objects and the
mapping of features from the real world into a virtual representation, i.e. mostly a 3D
map. The single corner orientation of detected features is determined with the centroid
technique [69], which delivers one dominant result.

BRIEF [70] is a feature description using binary tests between picture elements (pixels)
inside a smoothed subimage of the camera-captured reality. The high robustness of
BRIEF to perspective distortions, illumination changes, and blur comes with a weakness
to in-plane rotations [69]. An exhaustive search is used to remove redundant information
from the in-plane rotations and to generate a better signature for the key points inserted
into the 3D map. The combination of FAST and rotated BRIEF with V-SLAM assembles
ORB-SLAM [64]. The detected key points by ORB, as seen in Figure 2.7, are used to
create and afterwards improve the 3D key point map of the current camera-captured
scene.

Figure 2.7: Green lines indicate matched key points identified by ORB on a view point
change. Red dots indicate unmatched points [69].

Gao et al. [67] add a 3D dense map to the ORB-SLAM 3D key point map for the
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markerless AR registration stabilization. The virtual models seen through a display have
a more stable location and a smoother movement. Iterative Closest Point (ICP) is an
algorithm employed to minimize the difference between two or more point clouds. The
Hough voting algorithm is added to the V-SLAM for better detection and recognition
rates of objects and Iterative Closest Point (ICP) is applied for higher accuracy in the
model’s transformation matrices. With the ICP, the modified ORB-SLAM can detect
objects, know the object location and camera location simultaneously. ORB-SLAM
provides the generated and continuously refined 3D coordinate system in realtime, which
makes ORB-SLAM a suitable technology delivering AR the coordinates required for
model rendering. The jitter phenomenon in general makes rendered models jump in
different directions on a small distance frequently, e.g. the models jitter. The jitter
phenomenon in AR originates small but different tracked position registrations on each
frame, which is resolved by ORB-SLAM [67]. However, the need for depth information is
a disadvantage as most computers or mobile devices lack a depth camera.

Loop closing in digital maps is when a map path intersects with itself or another path and
the former is conflated with one of the two latter closing the path loop. Relocalization in
digital maps is localizing a position, which was known beforehand but was lost. Map reuse
is reusing or refining already inserted key point coordinates of a map. Bundle Adjustment
(BA) is the optimization of line of sight bundles in a 3D scene or 3D map recorded
by multiple cameras, where each camera can have a different perspective. Mur-Artal
and Tardós [63] created an open source project ORB-SLAM 2 [63] encompassing loop
closing, relocalization, and map reuse, and a lightweight mode for map reuse without map
updates, no Bundle Adjustment (BA) is performed. In the field of AR registration the
ORB-SLAM 2 [63] technique has the highest accuracy and performance and is applicable
on monocular, stereo, and Red Green Blue Depth (RGBD) camera systems. Hence,
laptops and mobile devices with cameras are in the application range of ORB-SLAM
2 [63]. The Back-End (BE) is executed on a dedicated thread and is based on BA,
enabling the system to run on standard Central Processing Units (CPUs), and to build
a global sparse reconstruction of the created and refined 3D map with a relatively low
computational demand similar algorithms. If the Front-End (FE) , also running on
a dedicated thread, input is a monocular or stereo video stream, the missing depth
information for a dense map can be derived when the camera is moved. One camera view
and the corresponding, refined sparse 3D map is depicted in Figure 2.8.

In the graph theory, spanning tree includes all vertices in a graph with the minimal
number of edges. A covisibility graph is formed by connecting all consecutive key frames
captured by a camera in a map to a spanning tree. The upper picture of Figure 2.8
depicts the local map key points as green dots. The lower picture of Figure 2.8 depicts
the global covisibility graph key points as black dots and the local map key points as red
dots. In lower picture of Figure 2.8 the key frames from the camera positions forming
the covisibility graph are depicted as blue dots for vertices and green lines represent
edges. The generated map from ORB-SLAM 2 [64] with test video footage was equal
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Figure 2.8: Visualization of the generated ORB-SLAM 2 map from a moving vehicle [71].

to the ground truth map. Other V-SLAM systems have tracking interruptions with the
same test video footage or fail on initialization [64]. A lightweight mode is included for
long-term localization solely running on one thread in a known environment without big
environmental changes.

Especially on mobile devices having low resources the aforementioned lightweight mode
could be used as AR registration method [63]. Camera localization in the lightweight
mode is performed by matching 3D points from the previous frame with the current
frame forming a continously refined 3D map making the key point coordinates more
precise. Scale Drift (SD) is an interpretation change over time legitimately applied to
entries inside a certain scale [72], e.g. a map, model, measure or criterion. Through scale
drift, gathered data differs over time more and more from its ideal or reality. A delayed
initialization performs a delay until enough data is gathered for the initialization to start.
The lightweight monocular version of ORB-SLAM 2 has Scale Drift (SD) and problems
with high distances inside camera-captured frames. The problem with high distances
originates in the inablility of creating key points and knowing their distance from just
one frame to another frame because of delayed initialization. A self driving car with
ORB-SLAM 2 on a highway has delayed initialization and would need additional depth
information for its start. Smaller environments, a room for example, favor a lightweight
ORB-SLAM 2 usage as no long distances exists nor a delayed initialization happens.
Additional stereo cameras or depth information make ORB-SLAM 2 more robust to
delayed initialization with a zero SD and achieve in 9 of ten cases a higher accuracy than
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the current state of the art [63]. On a monocular ORB-SLAM 2 application, accuracy is
gained through loop closing, which diminishes the SD [63, 72]. But, on a video sequence
going 800 meters into one direction, the SD accumulates and the translation error raises
up to 10 % of the 3D map key points. Qualified feature point selection [64] assumes that
the majority of all extracted feature points belong to the background of a camera-captured
scene. Only background feature points of a camera-captured scene, which are identified
as pairs within the current and previous key frames, are used for camera pose calculation
controlled by the covisibility graph. With the qualified feature point selection, Wang and
Shang [64] improved the monocular ORB-SLAM 2 accuracy and robustness for dynamic
environment changes by qualified feature point selection. The reversed idea originated
in the optical flow algorithm mostly used to calculate the x-direction and y-direction
velocities of foreground feature points within a covisibility graph. The K-means clustering
is used to minimize the feature point cluster to a prototype of itself resulting in less
computation time [64]. Only the cluster with the most matching feature points from the
covisibility graph is used for camera pose calculation as depicted in Figure 2.9.

Figure 2.9: Each single line end is a matched feature point. The blue line clusters are
used for camera pose calculation and the orange lines are excluded [64].

For more robustness to object superimposition, more rotation invariance, smaller position-
ing errors, and excluding extreme values a K-means classification on x values and y values
of a key point in the covisibility graph is used. Monocular ORB-SLAM 2 with qualified
feature point selection is the state of the art in constructing a map in each scenario
with tracking the cameras position in an unknown environment [64] in terms of accuracy.
Manly intended for robotic mapping and navigation, the capabilities of ORB-SLAM 2
can enhance multiple other fields requiring knowledge of their surroundings, one of the
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best examples is AR. Large Scale Direct - Simultaneous Localization and Mapping (LSD-
SLAM) is a direct monocular SLAM technique: Instead of using landmarks or feature
extraction, it directly operates on image intensities both for tracking and mapping [73].
Other realtime monocular tracking or mapping approaches besides V-SLAM achieving
nearly the same performance are rare. ORB-SLAM 2 relies heavily on feature extraction,
inside the field of V-SLAM there is another technique who operates directly on image
intensity named LSD-SLAM. An advantage is to use all the information contained within
an image and a certain robustness to environment with few texture [65].

Akin to ORB-SLAM 2, LSD-SLAM can be used with monocular, stereo, and RGBD
camera systems. A disadvantage is the high computational demand, whereby the
performance of LSD-SLAM on CPUs is poor. By prepending a filter to remove pixels
with an insufficient gradient the performance of LSD-SLAM on a CPUs rises and making
LSD-SLAM usable without a Graphical Processing Unit (GPU). As ORB-SLAM 2 has
three threads, LSD-SLAM is consists ofthree components. The first component tracks
the constant velocity of pixel and their motion model. The second component performs a
depth map estimation between the camera pose and the current key frame from previous
key frame iterations. The third component performs covisibility graph optimization in
the form of loop closure and key point minimization similar to ORB-SLAM 2. The final
created depth image is depicted in Figure 2.10.

Figure 2.10: The final build depth map at the top with the corresponding real scene at
the bottom [65].

More robustness to rotation and more speed are gained in comparison to the traditional
LSD-SLAM, but in terms of accuracy in relation to computational demand ORB-SLAM
2 is still more efficient. A new binary feature with a more advanced trade-off between
efficiency and accuracy for a speedup of LSD-SLAM was developed by Yang et al. [66].
Two threads are required in LSD-SLAM by Yang et al. [66], one for tracking and the other
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one for mapping. Pyramidal Lucas-Kanale (PLK) finds the location of a certain pixel area
from one image in a sequential image by the area’s intensity. PLK computes a velocity
vector for the area known as optical flow. Window size is proportional to accuracy and
robustness, bigger windows smooth the area, smaller windows capture more motion. The
pyramidal version blurs and shrinks the image recursively. From the pyramids peak down
to the biggest image the standard Lucas-Kanale is applied and each result is the inital
value for the next pyramid level [66]. The first thread is the Pyramidal Lucas-Kanale
(PLK) with depth and spatial constrains as optical flow, who estimates the camera pose
and its translation and rotation in 3D space at 30 Hertz. The Inertial Measurement
Unit (IMU)’s angular velocity dictates image resizing resulting in high resolution image
selection for high blur degrees and smaller images for low blur degrees as stabilization [66].

The second thread is the depth mapping, which continuously updates the inverse depth
map and compares the map to the previous frame and its distance. A threshold for the
distance triggers a new key frame generation and a depth map update. The Frames Per
Second (FPS) controls reciprocal the relevant image gradient and therefore the accurate
depth estimate as well as the optical flow accuracy. In other words, the higher the
FPS are the smaller the key frame images become. Tracking loss activates immediately
relocalization, which is trying to find a matching key frame in the already generated
covisibility graph caching only several hundred key frames but not millions as other image
retrieval approaches. The features correct location is reliably found in the new frames
coming from a video stream with translation and rotation of the camera and enables
the building of a depth map similar to V-SLAM. The feature and key point translation
errors in the generated map of Yang et al. [66] come close to the improved monocular
ORB-SLAM 2 accuracy on the TUM dataset of Wang and Shang [64] and range to five
centimeters, but with double the speed.

In terms of speed, it is probably true that the state of the art in constructing a map of
the camera’s position in an unknown environment is the Yang et al. method [66]. In
terms of accuracy, the claim of Yang et al. [66] that their method is state of the art
is doubtfully. The doubt arises through the ORB-SLAM version used for comparison
by Yang et al [66]. A correct performance comparison in accuracy and speed with the
state of the art monocular ORB-SLAM 2 [64] was not done, but rather claimed by Yang
et al. Because, Yang et al. [66] published their work in November 2018, whereas their
compared ORB-SLAM method [62] was published in 2015, reintroduced with refinements
as ORB-SLAM 2 in 2017 [63], and improved in its monocular usage for accuracy by
Wang and Shang [64] in August 2018. The Wang and Shang ORB-SLAM method [64]
was not used for comparison by Yang et al. [66] making their claim to be state of the
art brittle. As no evidence can disprove or prove the performance superiority in speed
or accuracy of both systems, both approaches remain as the state of the art with a
slightly better tendency to Wang and Shang [64]. The Wang and Shang method [64] is
the newest, currently most efficient ORB-SLAM and not the first ORB-SLAM [62] used
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for comparison by Yang et al. [66].

2.1.3 Effects on User Education

The human anatomy is complex and acquiring knowledge about all involved physiological
systems is alike. Traditionally anatomy education is performed by cadaver dissection,
which is a systematic exploration through removal of muscles, fat or other tissue of a
conserved human cadaver to learn more about gross anatomy [26]. Within the philosophy
of education, constructivism assumes that learners construct knowledge out of their
experiences influenced by already constructed, prior knowledge and experiences often
created by the learner’s social and cultural environment. Embodied cognition is a theory
assumeing that the motor system, the perceptual system, bodily interactions with the
environment, and the assumptions about the world shape cognition itself. The human
motor system performing during a cadaver dissection influences human cognition [74].
First, a full 3D view is given during a cadaver dissection and second, tactile experiences
are made both equal to active learning, which creates spontaneous knowledge according
the major learning theory constructivism and embodied cognition [13, 15].

Constructivism and embodied cognition have furthermore the benefit of a lower cognitive
load than traditional learning. Cadaver dissection is a validation of already acquired
knowledge and more elaborations and explorations for further knowledge gain and insight
can be made. Obtainment, preservation, and dissection with professionals of a human
cadaver is expensive and direct empirical evidence for the effectiveness of dissections
for learning anatomy is inexistent [26], and done because no practical alternatives ex-
ists. When the visualizations of AR become more detailed and representative in human
anatomy, the traditional dissection on a real human body may be exchanged with a dis-
section on a virtual human body. Heretofore, inherent embodied cognition during cadaver
dissection and its practice over many decades in universities speak strongly as justification.

The general public cannot make real cadaver dissections, rather digital ones on the
individual’s own body captured by a mobile platform video camera. Some of benefits of
a real cadaver dissection, namely full 3D view, active learning via interaction, and more
elaborations during a traditional cadaver dissection as well as explorations, could be taken
along with the AR digitalization, which has the benefits of inexpensiveness, maintenance,
expandability, filtering, and fewer real world resources [26]. Acquisition costs of human
cadavers are high, but will pay off in the long term, since low costs for software changes,
manpower, less time for preparing and designing new features as well as software parts are
inherent [27]. AR can create a highly extensible view, which depends on the used models,
model texture, and anatomical information through rendered models and information
not interfering with the learning process [27]. As many theories harvesting the benefits
from AR seam to be sublime, but the empirical research about how AR affects learning
gives a fragmented image and no concrete answer [26]. The immersion of AR plays an
important role in the researched state of mind from user during learning in various works
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[26, 75, 27, 76]. Immersion of learning, meaning the extent of several, involved senses
in the learning process, is proportional to the engagement of learning [76]. Benefits of
learning with AR [27, 76] are motivation increase, meaning more eagerness and interest
to engage with new technology, learning content, and physical interaction as driver for
augmented emotional engagement. Further benefits of learning with AR [27, 76] are
attention increase, concentration increase, meaning a higher concentration degree induced
through physical interaction, and a preserved satisfaction increase by the user. Similar
teaching concepts to learning with AR are student-centred or discovery-based learning,
meaning students are more independent and educators guide and adjust the learning
process instead of educating students by content imparting and collaborative learning
[27]. Important to note is that depending on the subject AR is not always the best choice,
e.g. learning to play a music instrument for example. AR individualized the exploration,
knowledge gain, instructions, supported independence of the exploration, and created an
invitational environment for communication and cooperation.

Creative learning is additionally supported by AR. Problem-solving, absorption, and
exploration abilities with new knowledge are improved by learning with AR. Anatomical,
spatial abilities and memorization of spatial contents are improved of participants learning
with AR and decreased drop-out quotes of subjects in learning facilities where spatial
knowledge is needed. The memory of participants is improved, during questionnaires
more content could be memorized with AR in comparison to traditional memorization
[27]. Empirical research on the effect of AR on learning [26] suggests that AR’s merit
in educational systems is in the field of impaired people. Munoz-Montoya et al. [77]
discovered that users who learned with AR remembered virtual objects and their location
significantly better in a previously unknown environment than other participants who
used photographs of the same scene.

A meta-analysis on the educational effectiveness of 3D visualization learning software
[75] encompassing 32 identified papers having 77.8 % usage of random control tests on
the concerned subject of learning with 3D visualizations was conducted. Within the
analysis, the correlation of learning benefits by learning the content with 3D visualiza-
tions instead of traditional learning is confirmed. Especially with anatomical content,
knowledge, spatial abilities, mental rotation, and rationalness are significantly influenced
by learning with 3D visualizations for women and men. Compared to nearly all other
educational methods, learning with 3D visualizations delivered better spatial knowledge
acquisition, but factual superiority of 3D visualization learning is unconfimred due to
inconsistent outcomes in all analyses of the learning [75]. Nevertheless, a general trend in
anatomical learning towards learning with 3D visualizations is observed and better results
are reported in user satisfaction and the perceived effectiveness of the learners compared
to traditional teaching methods [27, 76]. Many studies [16] found an improvement in
identification and localization of anatomical structures through learning with volumetric
3D visualizations of participants. The subset of participants having the poorest spatial
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ability in pretests had a significant disadvantage in later tests concerning learning with 3D
visualizations [16]. Limitations are that most participants were junior medical students
and the rapid change of 3D visualization programs may lead to different outcomes in the
future. Participants’s short-term performance in anatomical tasks meaning accuracy and
time needed for completing improved too. Khot et al. [16] showed the opposite, digital
objects are inferior to physical ones in the case of pelivc anatomy, VR is as effective as
2D depictions. Khot et al. [16] conclusion is traditional learning of normal anatomy
is superior to computer based 3D learning. Researchers who invented the Anatomy
Glove Learning System [16] state their system has the same effect on knowledge and
introspection confidence of students as learning hand anatomy traditionally. While other
studies [16] show the same equality on learning 3D or traditionally anatomy structures,
it is important to note that the participants who participated in 3D learning modalities
reported a higher satisfaction.

Of the 30 papers [16] identified considering 3D learning from over 90.000 papers, only
two participants were from more than one school and only eleven papers had over 100
participants. Most papers do not explain their theoretical basis, do not give a logical
explanation as justification for their findings, nor provide evidence for the validity of
their methods. Randomized controlled studies, controlled studies or crossover studies
are used for support of their research design. Impact assessment is based on testing
knowledge learnt by answering quiz questions, theoretical examinations, and practical
examinations. But the two questions “Has 3D learning benefits compared to traditional
learning?” and “What are medium-term and long-term effects of 3D learning?” remain
unanswered. Unfortunately and altogether, the quality of most studies in the current
paragraph giving multiple results on 3D anatomy learning lack a profound and definite
basis [16] as the various results suggest. Limitations are that the PubMed, EMBASE,
and the Web of Knowledge DBs were searched with seven keywords and only the English
language excluding allied health disciplines such as nursing, physiotherapy, and occupa-
tional therapy [16] as well as other languages. Khot et al. [16] are confident alongside of
their paper’s limitations that the unlikeliness of outcome changes through adding more
data is significant and remaining. Two proven statements can be made, first, 3D learning
increases short-term accuracy and speed of fulfilling anatomical tasks, and second, the
interest of research in 3D learning grows as the increasing paper publication count in
recent years shows.

Only one study by Sommerauer and Müller [78] was found juxtaposing short-term and
long-term effects of learning with AR. The 23 participants in the study by Sommerauer
and Müller [78], being 22 pupils and their mathematics teacher, was tested for short-term
and long-term effects. Tested content was not in the medical nor anatomical field but the
mathematics field during an exposition. On 12 exhibits, marker-based AR was installed.
Only a significant effect of learning with AR on short-term but not on long-term could be
shown. However, Sommerauer and Müller [78] dit not treat or show their AR installations.
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A bias of the AR design and its installation have to be taken into account when refering
to Sommerauer and Müller [78], especially, because the design of AR influenced the
medium-term memorization in another study [79].

Learning effects of a mobile marker-based AR learning environment was compared with
learning effects of a mobile learning environment and the former let participants achieve
8.1 % less errors after a medium-term test [79]. The short-term and medium-term learning
effects with the two learning environments was not compared to traditional learning
[79], restricting the results to marker-based AR compared with traditional learning.
Sommerauer and Müller [78] who investigated short-term and long-term learning effects
state that using a whole class as participants and that the long-term test was part of
their lessons may have contributed to the final outcome, a positive short-term learning
effect, too. As the proven strengths of learning with AR are an increment of spatial
abilities and positive short-term effects, a study investigating short-term, medium-term,
and long-term with spatial AR learning content, as the developed application ARnatomy,
may deliver insights medium-term or long-term learning effects.

In medicine the 3D understanding of spatial anatomy and its relationships is important.
Text provides complementary information wherein complex processes are presented tex-
tually, their attributes and structures visually as well as spatially [33]. A combination
of 3D models with correct textual information should to use the strengths of textual
and model information. 3D rendering offers more exploration possibilities, since its 3D
dimensions are not projected into the 2D space as illustrations in books. The remaining
of three-dimensionality eliminates the cognitive challenge of re-projecting 2D illustrations
in books into the 3D space within the students minds [16]. Rotation and manipulation
of 3D anatomy from different angels and views helps to get faster and easier insight and
understanding of anatomy. Research results led to the recommendation that linkage to
definitions and details should be dynamic, secondary media as labels and annotations, in
applications containing anatomical models [33]. Important are highly crosslinked and
hyperlinked definitions, labels, and annotations for a well established interconnection of
information between all anatomy parts.

Creating a link between text and models is crucial to have one view only with translations
of disappearing and appearing content to not break concentration and attention. The
aim of developers should be to keep cognition in the created mental picture and trying
to create one mental picture with texts, models or other modalities instead of creating
multiple separate mental pictures referring to each other. The previous identified benefits
may not apply to each application as the application’s interaction, User Interface (UI),
and information rendering can be different [33]. Careful development, knowledge about
AR intrinsics, their effects on users, Software Development Kit (SDK)s, and the SDKs
capabilities are highly important to profit from the learning effects from AR as much as
possible.
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2.2 Anatomy Applications without Augmented Reality
Leading mobile applications rendering human anatomy are from the vendors Visible
Body [80], 3D4medical [81], and PocketAnatomy [82]. The aforementioned vendors so not
have any scientific publications discussing their data, design, interaction, and evaluation
[13]. The websites of the aforementioned vendors and their videos show detailed surface
models, anatomical definitions with a full range of 2D and 3D touch interaction, no AR,
and the intention to educate the general public. A free online visualization of 2D and
3D human anatomy imaging data targeted at medical students and experts is Online
Anatomical Human (OAH) [31], which can be accessed through a web browser. The OAH
enables interactive exploration for the user, adding landmarks, region, line annotations,
shareable hyperlinks, and leap motion, which enables the control of the visualization
entirely by hand gestures. Sliders allow users to dissect the models simultaneously on
all 3D axes and show the model’s Computed Tomography (CT) images, and Magnetic
Resonance Imaging (MRI) in the dissected area.

Smit et al. [31] state that the number of specialists except radiologists viewing CT images,
and MRI rises. Hence, it is fruitful to give everyone including medical students and
doctors the ability to learn mental reconstruction and association of 3D anatomy with
2D images. OAH provides online courses for learners and the landmarks and hyperlinks
are intended as teaching and communication methods, but lack the support of AR for
embodied cognition. The Open Anatomy Browser (OAB) is an open source, web-based,
volumetric imaging 3D model visualization with controllable clinical MRI intersections
on each of the 3D axis. Geometric models, textual metadata, textual hierarchy of
anatomical structures, sharable hyperlinks, dynamic shared views for multiple users, and
collaborative interactive sessions are included [32].

A handful of locally developed human anatomy regions is viewable and publicly available
in atlases. But the 2D MRI intersections and no textual definitions of the selected or
viewed anatomical structures limit the audience to personnel educated in the radiographic
field. AR is unsupported. The visualizations of OAB and their controls are not optimized
for mobile devices. Inspired fromWikipedia, OAB users can create the information audited
by consistency checks and supported by version history. Halle et al. [32] do not give the
description, if only scientific users with medical background are allowed to add anatomical
content or not. An application to train liver surgeons in computer-based planning is
the LiverSurgeryTrainer [83], which supports decision making in preoperative learning.
Radiological visualizations are paired with volumetric information, an interactive 3D liver
model, and video material from actual surgeries to provide a learning platform for surgery
and resection planning. The training steps form the workflow. First, a case selection
from 13 predefined cases categorized by diagnosis, difficulty, and therapy. Second, the
diagnosis going through anamnesis, examinations, and medical imaging. Third, the
resection planning consists of vessel anatomy judgement, virtual resection line definition,
and is depicted in Figure 2.11. Fourth, the analysis encompasses expert recommendations
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and real surgery.

Figure 2.11: The yellow line represents the resection line and for novices the tumor is
highlighted [83].

All cases and information was validated in terms of correctness and relevance by experts
to improve the quality. As shown in Figure 2.11, radiological information is depicted in
2D with textual cues what the students should do. A view change in the planning step
from the 2D radiological image to the 3D model depicting each time the currently drawn
interactive resection lines. The resection surface and volumes are calculated automatically
and presented. The resection date is important to give feedback if the remnant volume
size is correct, vessel cuts or safety margins are violated. The planning result is then
finally represented in the 3D model. Students can directly compare their resection results
in terms of 2D, 3D models, anatomical variants, number of resection surfaces, volume of
remnant and resection liver parenchyma [83] with the expert ones. As multiple solutions
exist, no direct assessment of the students input is given.

Similar work without VR is conducted by Saalfeld et al. [84], where realistic 3D vessels or
their 2D representations can be sketched with bloodflow simulations as well as operational
access paths of vessels. Application fields are treatment planning, patient education or
consultation, and general fast treatment option visualizations in 3D. Each single vessel
is constructed by the program around a hand drawn, editable, smoothed center line.
The smoothing is necessary, since the stylus used on a zSpace 100 handheld can have
tracking jitter causing the sketched lines to be irregularly. The handheld is capabile of
rendering stereopsis at a rate of 120 Hertz with additional glasses needed for the users.
The stereopsis limits the usage of the application only to rather rare steropsis handhelds
and not to the majority of handhelds as pads, mobile devices or even computers. Vessel
regions can be highlighted or cut for better visualization and annotated by 3D labels or
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notes hovering in the air or directly on the vessel surface. In computer graphics, metaballs
are organic-looking 3D-dimensional objects. The metaballs smoothly blend into each
other and allow users the restructuring of the vessel surface and to create branches as
depicted in Figure 2.12.

Figure 2.12: A sketched blood vessel with its metaballs and the handheld [84].

Real patient data can be imported and is automatically drawn to enable fast real data
exploration, usage, and amendment [84]. The bloodflow adapts according to the vessel
structure and shows the blooflow impact on the vessel structure and especially on vessel
diseases. The bloodflow simulation is a realtime grid-based (Eulerian) Navier-Stokes
simulation on the GPU [84] along the center line with fast surface collision detection.
The bloodflow simulation is considered to be sufficient to visualize the repercussions of
aneurysms and stenoses.

2.3 Anatomy Applications with Augmented Reality
AR has many application cases in healthcare, e.g. showing nearby defibrillators, surgeon
assistance, sport applications, education, health report to or by patients, and anatomy
illustration during consultation [1]. Current healthcare applications are treated with
marker-based AR in Subsection 2.3.1 and with markerless AR in Subsection 2.3.2.

2.3.1 Marker-Based Approaches

Including anatomy visualizations within realtime video streams creates anatomical AR.
The anatomy models are mapped to key points a camera-captured human shape. Navab et
al. [29] use the depth camera of Microsoft Kinect for positioning models of photographic
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and CT datasets volumetric rendered as superimposition on the user body, which suggests
the illusion to look into the own body. Target groups are teaching personnel and medical
students, but not the general public. The application from Navab et al. [29] cannot
run on mobile devices due to its usage of Microsoft Kinect. Textual information and
additional 3D models can be displayed for more information transport.

Interaction methods and gestures are implemented to select sagittal layers of the rendered
model volume. A user has to move his hand from left to right to perform a sattigal slice,
front or back to select coronal layers, and up or down to switch between the sattigal
and coronal layer modes. Navab et al. [29] state that they use a frosted glass metaphor,
where the screen is viewed as a frosted glass. All objects on the glass are clearly visible
and all others are blurred relatively to their distance to the glass. In the context of
illustrative rendering, frosted glass belongs to high level illustrative rendering [24] with
a novel interaction method. Low level illustrative rendering changes the appearance of
objects to back- or foreground specific information, e.g. hatching generations, silhouette,
crease line, or colour changes. High level illustrative rendering changes the visibility of
objects to back- or foreground specific information, e.g. adding, removing, clipping or
making parts transparent [85, 86]. Combinations of low level and high level illustrative
renderings are possible. Missing functionality in Navab et al. [29] is deformation relative
to user movement, textual definitions, and public access.

Similar to the mirracle project CT, the Living Book of Anatomy (LBA) [74] captures
limb movement, speech or orofacial movement with Microsoft Kinect (MK) and visualizes
information about involved muscles superimposed onto the user image shown on a display.
The difference of LBA [74] to the mirracle project [29] are the intended target groups,
namely the general public and medicine students, but both target groups need at least
the MK camera. The MK limits the application area mostly to the home or the university,
where a MK camera can be set up. A calibration to generate user specific bounding shapes
of anatomy is needed for the LBA [74]. Linear blend skinning transforms vertices within
a mesh by a blend of multiple transformations determined by bones inside the mesh. The
bones are restricted in their range of movement and rotation and the mesh vertices move
only when the corresponding bone moves. Further deformation of anatomy models in
LBA [74] is applied via linear blend skinning [74] and enables realtime anatomy animation
and mesh deformation with user movements. The 23 bones of the MK skeleton are used
for mesh deformation on each frame. Different modes of anatomical superimposition with
the MK camera are depicted in Figure 2.13. The usage of a screen during an operation is
a dilemma. A near display in the region of the patient needs to be sterilized, which has
the hazard of patient pollution. A distant display increases cognitive load due to looking
forth and back causing eye adjustments [87]. Improvement of this situation is AR, where
datasets, PET or CT images from the patient are fused with the operative area on a
screen or on the patient himself. Common is the patient data projection without any
orientation or guidance of virtual objects. More accuracy is achieved by a projection with
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Figure 2.13: a) Skeletal model used b) Knee flexion muscle activity c,d) Skeleton super-
imposition e) Multiple organ superimposition f) Single selected organ superimposition
[74].

previously set up markers. During surgeries the registration forms a reoccurring problem,
since cameras need to be calibrated in case of patient movements or new patient data.
In Figure 2.14, an image overlay on the patient’s skin is depicted.

Figure 2.14: Left: Ankle with the drill entering as small yellow dot is visualized. Right:
Focus and context rendering with shading as an additional depth cue of the ankle [87].

AR registration on regions with more entropy or large skin areas is easier than a
registration on small skin areas, because more characteristics and features can be used
for the registration. Small skin areas are frequently encountered in surgeries forming
a problem for precise AR registration. The most used technology is the tracking of
artificial markers fit to the digital renderings to minimize errors and better adoption
of AR. Disadvantages of marker-based AR are limitations in interaction, tracking of
markers during movement, deformation, scaling, missalignments, inaccuracy threshold,
time, and the visual as well as the computational control [87, 2]. But new, markerless
approaches of AR the medical field are being developed continuously, which have improved
capabilities compared to marker-based AR. The following Subsection 2.3.2 treats five
medical markerless AR state of the art applications.

2.3.2 Markerless Approaches

With the marker-based approach, fiducial markers need to be positioned on a patient or
on a Region of Interest (RI) for registration. Markers in a big number can be expensive,
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can distract the medical staff during their work, need to be manufactured, and positioned
in the first place before the application can register them. Markerless AR is less invasive
than marker-based AR [88]. Especially tracked animals can be distracted by markers
and biasing their performance, medical treatments, and the final results. Alternatives to
marker-based AR are skeleton fitting or regression training based on derived features
of the objects to be registered. Fitting skeletons or active contour models have a high
accuracy and performance but have a high development complexity, which limits their
scope. Regression training using computational generated features achieve the best
performance in pose estimation for humans. A special case in human pose estimation is
HPE, which is used in this master thesis and treated in Section 2.5.2.

The delivered landmarks from the pose estimation are used for markerless AR positioning.
The training and benchmark datasets are large and can have more than 1.000 entries,
which can result in huge feature extraction files and high computational demand. Mathis
et al. [88] utilized the state of the art transfer learning with the feature detector of the
DeeperCut pose estimation algorithm [88] to achieve outstanding results on human limb
detection with only approximately 200 training images. A Residual Neural Network
(RNN) builds on pyramidal cells similar to the ones in the cerebral cortex. RNN utilize
skip connections or shortcuts to optionally jump over one or more pyramidal cells. The
feature detectors used in transfer learning are consist ofenormous deep Residual Neural
Network (RNN)s pretrained with ImageNet [88] containing more than 14 million images.

The training with few hundred frames results in specialized, stable feature detectors able
to recognize and track anatomy successfully. The tests included changing illumination,
dark transparent side walls, shadows, and distortions from a wide-angle lens on video
material of a mouse walking and sniffing along a scent path [88]. The training set
consisted of 100 frames with one mouse visible and allowed the RNN to detect multiple
mice and their single body parts successfully with a maximum feature point detection
variation of five pixels. The recognized anatomy features were small, e.g. the mouse’s
snout was 30 pixels wide and the video width was 654 pixels. If the training dataset
contains multiple mice with occlusions, a better tracking result in terms of accuracy is
achieved as with only one mouse. RNNs trained to recognize more body parts outperform
RNNs trained to recognize less body parts with nearly half of the precision in pixels. In
Figure 2.15, the detected mouse body orientation is visualized via lines and determined
by its snout, ears, and tail.

Applying the achieved results and knowledge of transfer learning in the medical field,
one question arises: How small can markers became and their placement areas be? A
video can be zoomed or captured with special lenses to show small content zoomed on a
screen. On zoomed visual information, markerless AR can do its enhancements without
any camera recalibrations, if the patient moves or new data is available as opposed to
marker-based AR. Mathis et al. [88] performed an exemplary test by tracking all fingers of
a mouse within a monocular video stream. The constraints of transfer learning lay beyond
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Figure 2.15: The green points show future snout positions and the cyan points past snout
positions. The magenta coloured lines show the body orientation determined by four
vertices [88].

the executed laboratory tests of Mathis et al. [88] due to the outstanding performance
in a challenging environment having strong varying background and reflective walls.
Many use cases in the medical environment, surgeries or medical video data lack varying
background or reflective walls. So, the expectations on tracking speed and tracking
accuracy from Mathis et al. [88] are very high as the lack of deflections should cause a
small tracking speed or tracking accuracy increase.

On-patient data visualization in an AR environment can be made more robust via an
improved registration method. Macedo and Apolinário Jr. [89] focus on the 3D superim-
positions of medical 2D pictures or data via Volume Clipping (VC) . Continuous conflated
regions or whole images on the z-axis can create a volumetric 3D data and models from
2D CT images or 2D MRI. Direct Volume Rendering (DVR) gets a 3D representation
of the volume data directly. The data is considered to represent a semi-transparent
light-emitting medium, which is used slice by slice for 3D volume generation. The
algorithm used is known as front-to-back Direct Volume Rendering (DVR) , a single
raycast through the already clipped bounding box of the 3D model is performed on
a single rendering pass to select the correct 2D CT image or 2D MRI. The 2D image
is blended with the Red Green Blue (RGB) data coming from the video stream for a
realistic appearance, and occlusions are highly important too for realism. If a single
raycast is on the outside the clipped volume the ray is discarded and the video stream
pixel occludes the image pixel. Otherwise, the raycast travels through the volume and
the image pixel occludes the video pixel.

Due to different greyscale values of bones and soft tissue, each single one or both can be
identified and rendered differently in VC. Bone can be rendered more realistically and soft
tiusse can be blended with the background for bone highlighting or vice versa. Focus and
Context Visualization Paradigm (FCVP) shows the medical data on the patient’s body as
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focus region, provides a better perception and immersion of medical data for the viewer as
superimposition than without FCVP. The treated procedure is named Focus and Context
Visualization Paradigm (FCVP) and shows the medical data on the patient’s body as
focus region, which is superior to superimposition [89]. With FCVP, the visual perception
of the physician is improved. The lack of additional markers or other tracking hardware is
beneficial for a quick usage by just starting the application. But accuracy remains a major
problem in markerless AR for medical applications. In educational applications lower accu-
racy is sufficient. It is only a matter of time until the accuracy is high enough for medical
usage, since works as the aforementioned Mathis et al. [88] improve accuracy continuously.

With FCVP and the 3D depth information from the video stream captured by MK, not
only the volumetric model created by 2D image data but also the video stream can be
clipped to see the background behind a user. The background was saved beforehand. A
ray traverses on the z axis. If the ray is in the volumetric model region, the beforehand
saved background is not rendered but the anatomy of the user. The medical image is
clipped too and its foreground is blended with the video background for more realism as
depicted in Figure 2.16.

Figure 2.16: Left: FCVP with smooth contours on the user. Middle: Visible background
with a superimposed CT image. Right: Volume clipping of the user by MRI data [89]

The depth data from the MK camera with its KinectFusion algorithm are both processed
with a GPU eliminating their deployment on mobile devices. The high computational
demand of VC, rendering CT images, and rendering MRI makes the solution [89] in-
applicable for the general public. Solely relying on depth data from any depth camera
would extend the application support to mobile devices, which have a depth camera
included. The numbers of mobile devices having a built-in depth camera is still low. The
majority of the general public carries mobile devices with monocular cameras and this
master thesis aims exactly for this majority as target group. Another limitation, besides
the need for an GPU and a mobile depth camera, may be the VC, the rendering of CT
images, the rendering of MRI, and not with 3D anatomy models synchronized with a
face mesh as this master thesis does. Because, CT images and MRI are inappropriate for
the education of the general public as laymen lack the medical skills to read radiographic
or cross-sectional images. An installed MK system with VC software is applicable in
public places or medical buildings. Stationary computers have a GPU and are capable of
processing the accruing depth data. Incorporating the current state of the art in HPE,
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treated in Section 2.5.2, could make the application more accurate due to more precise
landmarks and eradicate the need for depth information. The HPE is solely performed
on monocular video data. Most hospitals contain a surgery room performing operations
and research strives to develop better operating techniques. Orthopedic trauma surgery
focuses on minimally invasive operations, which require multiple 2D fluoroscopy intra-
operative X-ray images to understand the 3D spatial relations in the operating area.
Difficult mental mapping and extensive training is required to perform effectively and
even experienced surgeons report longer procedure times, increased radiation exposure,
multiple tool insertions, and surgeon frustration [90].

Amirkhanov et al. [30] developed WithTeeth, an application capable of previewing dental
treatment by rendering different teeth models in realtime with AR utilizing the virtual
mirror approach. The purpose is early feedback for the patient to raise endorsement
as well as trust in the treatment itself and in its outcome. Supported input formats
are pictures and videos. Teeth are sessile in the maxilla and mandible and have many
properties, pose, meaning positing and orientation, form, colour, and texture. The
identified and manipulated properties are colour and shape. Patients can change teeth
models and colour until they are satisfied, the result may be communicated to the dental
technicians lowering travailing, treatment, time, and costs. After an adjustment by the
technician the final feedback is presented to the patient’s device, who then can decide, if
he undergoes a treatment or not.

Figure 2.17: The processing pipeline of WithTeeth [30]

The algorithm depicted in Figure 2.17 consists of several steps and is applied sequentially
in realtime on each frame [30]. Step one is face detection, step two is landmark extrac-
tion, step three is inner-lip landmark determination, step four is head and model pose
estimation, step five is denture positioning and orientation, and step six is rendering of
the teeth model. The foreground plane is the picture showing the face with a transparent
inner-lip area, followed by the virtual teeth model as middle plane, and the original
picture as background plane. The threefold plane rendering technique makes the tongue
visible behind the rendered dental models in the final image. Single tooth superimposi-
tion is currently unsupported and may be implemented by a visibility mask and prior
knowledge of the patient’s teeth layout. The tests showed zooming is advantageous to
see dental details, but currently unsupported and may be achieved with adding more
facial landmarks around the mouth. Missing real teeth are unsupported, if a patient
misses a teeth the skin above may be concave, which could be counterbalanced with skin
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Figure 2.18: Final result of Withteeth, zoomed in on teeth superimposition by virtual
denture [30].

deformation. The usage of OpenCV [91], dlib [92], and the Unreal Engine [93] makes
WithTeeth platform agnostic and unavailable for the education of the general public. As
a minimum for the education of the general public, adding dental information and a FE,
on a mobile application for example, is required. Then, interaction with the teeth and
the education about them would become possible. If the interaction of single teeth would
be supported too, information for education on prophylaxis, dental bridge, repercussions
of diastema, implants, dental prosthesis ecetera could be added.

Hajek et al. [90] developed to their knowledge the first markerless AR solution for
intra-operative target anatomy designed for surgeons and not the general public. The
application is an in-situ tracking based on 2D X-ray images, rendered as AR in an optical
see-through Head-Mounted Display (HMD) to superimpose the anatomy of interest.
A C-Arm (CA) intensifies scanned images, mostly fluoroscopic ones, primarily during
surgical or orthopedic procedures. Figuratively depicted, the patient or object to be
scanned lies inside the recess of the letter C, which is the name origin of the C-Arm
(CA) . Operation observers, residents, and personnel moving the CA delivering 2D X-ray
images can understand the actions of the leading surgeon better through marking the
in-vivo anatomy on the HMD.

The coordinate system for the AR visualizations are obtained from V-SLAM algorithm
receiving additional depth information from a Microsoft Hololens [94] as tracker facing
away from the patient and additionally mounted on the CA. In a standard CA position
and both poses of the tracker and X-ray cameras are known. The tracker and the X-ray
camera are offline calibrated once by hand and then the data from both systems are joined
to have a translation matrix between V-SLAM coordinates as well as the 3D volume
generated by 2D X-ray images. With the known data from the tracker and the X-ray
camera, AR becomes possible and is visualized in the form of volumetric superimposition
of real anatomy with the 3D volume. User defined landmarks and annotations as well as
lines indicating the angle and direction of the X-ray who generated the images can be
rendered additionally. In Figure 2.19, a radiopaque tubular structure with a radius of
five millimeters serving as phantom anatomy is depicted as well as the in-vivo anatomy
rendering on the outside of the foam tissue.
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Figure 2.19: Image a) Operator perspective seeing the AR with an incorrect CA alignment.
Image b) Side X-ray image of alignment in a). Image c) Top X-ray image of alignment in
a). Image d) Operator perspective seeing the AR with a correct CA alignment [90]

Hajek et al. [95] state that other approaches using preprocessed models of scenes would
be affected through CA movement, especially when the CA changes its orientation. The
difference from the Hajek et al. [95] approach to others is that an a preprocessed model
of the room with only the operation table inside is used instead of the fully equipped
room. Tools or people are just considered as occlusions or surfaces. With the RGBD
configuration, the pose of the device rendering AR is known in the coordinate system
and a radiation visualization can be calculated on each new frame [95]. An improvement
would be to incorporate monocular ORB-SLAM 2 [64] to increase accuracy, robustness,
and to remove therefore involved RGBD sensors making the application available to far
more devices and personnel. As further improvement, the AR radiation visualization of
Padoy et al. [95] should be fused with the AR 2D X-ray image superimposition on the
anatomy of interest by Hajek et al. [90]. Users would profit of all benefits from both
applications, additional radiation awareness, X-ray image superimposition, and correct
CA image angle visualization.

An Electromagnetic Field (EMF) is a physical field produced by electrically charged
objects. With the visualization of invisible entities, the education about invisible entities
become possible, e.g. any physical fields as Electromagnetic Field (EMF) s along with
their properties could be visualized. a user may select the location of his Wireless Local
Area Network (WLAN) router via his mobile device and then the mobile device visualizes
the WLAN as AR EMF with the field visualization colour depending on the WLAN
signal strength. Other field visualizations, as Bluetooth or atomic radiation with a
“Geiger-Müller Tube” [96] for example, should work too.
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2.4 Model Datasets

The quality of perceived AR can only be as high as the used models. Leading model
vendors selling access to their artistically, medical, scientific inaccurate datasets [13] for
visualization are Digimation [97], including data from the free Visible Human Project
(VHP) [98], and TurboSquid [99]. Digimation provides nearly 600 and TurboSquid de-
livers nearly 10.000 medical models about the human body and both are intended for
the general public. In contrast to the former two, VHP consists of scientific accurate
cross-sectional cryosection, CT images, and MRI obtained from one female cadaver and
one male cadaver. The CT images and MRI are captured in 0.33 mm intervals for the
female and in 4 mm intervals for the male one. VHP can be accessed by the general public
and its data is mainly intended for science. Artistically created and scientific accurate
anatomical human datasets are BioDigital [100], ZygoteBody [15], and Body Parts 3D
(BP3D) [4]. BioDigital is an online cloud service including visualizations of anatomy,
diseases, treatment, and interactive 3D models. The data from BioDigital is accessible
through payment via an Application Programming Interface (API). Own applications
can be build with the data from BioDigital for the general public, for medical students,
and medical personnel due to the high scientific detail of the models.

ZygoteBody is a 3D interaction, web-based human anatomy online visualization with
restricted possibilities and without AR. Features as high resolution 3D anatomy, additional
content, advanced navigation, notes, exact viewing angle, dissections, adding anatomy
to a view, removing anatomy from a view, and saving everything as a state becomes
available with a paid premium account. ZygoteBody is intended as teaching and learning
support of human anatomy online and provides no full digital access to the DBs. The
target group are medical students as well as medical personnel, but everyone who pays
can learn. BP3D is a flat file collection, which provides in its current version number three
1523 single, free, anatomical, 3D objects of a human male. From all mentioned DBs or
flat file collections, BP3D is the only free scientific one for the general public and science.
A free viewing tool named Anatomography is available for screenshot creation with the
desired angle, zoom, colour, opacity, and Anatomography lacks definitions, mobile design,
as well as AR.

2.5 Face Tracking

Rendering anatomical AR content as superimposition in front of a face in a video stream
requires the facial recognition and tracking beforehand. Landmarks of a detected face
must be tracked frame by frame for a correct anatomical model rendering as well as the
current head rotation in 3D space. Several algorithms for face detection and HPE exist.
Subsection 2.5.1 treats the state of the art in face recognition and Subsection 2.5.2 treats
the state of the art in HPE.
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2.5.1 Face Recognition

An public available computer vision library named OpenCV [91] is widely used in practice
for many years. OpenCV offers the Eigenface, FisherFace, and LBPFace algorithms for
face detection. All three algorithms rely on feature extraction and their classification
against a training set with Nearest Neighbour Classification (NNC). The Sparse Repre-
sentation Classification (SRC) is a face recognition classifier using pixels without feature
extraction and the l1 optimization for less influence of illumination and occlusions [101].
Shen et al. [101] use Sparse Representation Classification (SRC) for face recognition and
outperform the three algorithms in OpenCV in recognition accuracy and recognition
speed. The advantage of SRC is its direct pixel usage without feature extraction, more
robustness to illumination changes, and occlusions.

A pixel dimensional dictionary is build from column-vectorized images of the same
size as the images and for each subject, a subdirectory is created. Classes are formed
and a test image is found inside the dictionary by solving for unkown variables in a
linear equation denoting the affiliation to a class. Ideally is a test image in a vector-
spanned space of one corresponding class. If the spanned class number is large and
the ideal condition holds, the test image denotes a sparse vector. Solving the afore-
mentioned linear equations is computationally demanding due to the pixel dimensional
dictionary. Random projection matrices can be applied to reduce needed computational
resources and preserve accuracy. For an AR application, where oneself or other humans
in motion are captured, pure face recognition is insufficient. No face landmarks are
detected and relying only on recognized sparse face data is insufficient for model mapping.

Face recognition can be effective and robust against various noises or low resolution.
Nugroho and Kusumoputro [102] achieve strong noise recognition rates above 95 % and
98 % on clear images. The fuzzy technique converts all images to their greyscales, apply
Gaussian, Poisson, and salt-and-pepper noises, for each single face image of a person. A
person must be depicted in each single pose to detect. Finally, all generated images of one
person are grouped into an one set crisp-vector reducing 2D vectors into one-dimensional
vectors. Triangular fuzzification with the lowest, mean, and highest greylevel intensity
values, as depiced in Figure 2.20, of a pixel on all sets of face images are applied to
transform their crisp vectors to fuzzy ones.

It seams the state of the art in face recognition requires predefined images of users
[101, 102, 103]. No single work has mentioned extracting the needed images from the
video stream of the front camera of a mobile platform, when the application or a task in
an application needing face recognition is running. HPE can recognize faces and delivers
face landmarks and their rotation in 3D space, which can be used for further processing,
but incorporates a higher computational demand than face recognition.
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Figure 2.20: Triangular fuzzification with the lowest (xl), mean (xc), and highest (xr)
greylevel intensity values [102].

2.5.2 Head Pose Estimation

Inferring the head orientation via an image or video relative to a camera is HPE [104].
HPE can be divided in two categories, i.e. coarse and fine, where the data of both is
detected in an unconstrained 2D or 3D space. The coarse HPE category detects the
head pose directions roughly [105]. The fine HPE category detects the three angles, i.e.
yaw, pitch, and roll, depicted in Figure 2.21, as well as the face orientation encompassing
typically all or a subset of the landmark points aligned with eyebrows, eyes, lips or the
jaw.

Figure 2.21: The 3D axes with their rotations shown on a sketch of a face.

Cascaded Convolutional Networks (CCNs) are a consecutive interconnection of single
Convolutional Neural Networks (CNNs) without feedback. Thus, the adjective cascaded
in the name of CCN. Multi-task Cascaded Convolutional Networks (CCN) are used
in the field of inter-frame correlations and by Florea et al. [104] to perform fast face
detection and HPE via deep trained CCNs. The CCNs use the link between detection,
alignment, and vicinity of facial landmarks for performance gains. Convolutional Neural
Networks (CNNs) are a class of deep neural networks, wherein neuron connectivity
patterns resemble the organization of an animal visual cortex. CNNs are designed to
require minimal preprocessing. Three stages form the multi-task deep Convolutional
Neuronal Networks (CNN)s for face detection. An image pyramid with different sizes
of the target image is created, which is not labeled as step by Florea et al. [104]. For
completeness, the image pyramid generation, required in step one, and the pretraining
of a deep neuronal network with face images, required in step four, should be declared
as initial step zero. A proposal network generates detection proposals, which can be
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discarded or processed, for faster overall detection of a CCN. Non-Maximum Suppression
(NMS) is an edge thinning technique applied to find the largest edge. Step one determines
the face Bounding Boxs (BBs) with a very shallow and fast proposal network and a
Non-Maximum Suppression (NMS) merges superimposing BBs. Step two performs BB
deletion through a refine network. Step three detects the final BB with five face landmarks
with an output network. Step four feds BB data into the pretrained deep neuronal net-
work for face recognition. All steps combined form the HPE method by Florea et al. [104].

Pitch, roll, and yaw prediction is conducted via scaling of the last fully connected network
layer that initially has a dimension of 1000. Only the luminance of the single frames
is used. The already found BBs are fed into a classic machine learning multi-layer
perceptron, and two deep learning neuronal networks, i.e. VGG16 [106] and ResNet50
[107], detect the face. A luminance image contains only brightness information without
any colour information. The two neuronal networks performed better than the multi-layer
perceptron, but only with fine tuned data and the usage of consecutive luminance frames.
Face landmarks moving a lot, as the mouth for instance, increase error rate as well as yaw
rotations. A yaw rotation makes the two irises appear to be asymmetrical inside the face
BB, which causes false predictions [104]. Adding nose information as countermeasure
in the training process decreased false predictions. Neuronal networks can outperform
classic machine learning algorithms with a nine times lower yaw error rate and a four
times lower pitch error rate.

A new state of the art description in face detection and HPE is achieved by Wu et al.
[108] with CCNs. Better performance than other works comes from the focus of Wu
et al. [108] on extended feature fusion in the multi-task learning process and training
process. Shallow layers used in the multi-task CCNs contain features more suitable for
localization, which respond to corners as well as edges and serve as important structures
for HPE. Deep layers used in the multi-task CCNs contain features more suitable for
learning, i.e. any color information, properties, landmarks or landmark regions. The
baseline framework in the multi-task CCNs is adapted accordingly to the shallow layers
and deep layers. Shallow layers, deep layers, and in-between layers are fused in the
last CNN enabling it to benefit of features of the previous deep layers, which increases
accuracy through the more superficial features of shallow layers. The face detection speed
and accuracy gains nothing from feature fusion of shallow layers and deep layers, but the
HPE speed and accuracy increases. The multi-task CCN from Wu et al. [108] is the new
state of the art in HPE.

The algorithm structure of Wu et al. [108] is similar to the work of Florea et al. [104]
and has notable different details in step two and three. Step two is an optimized CNN,
its input is a BB coming from step one. By the calculation of the BB center, each
BB content is cut out of the original BB as a square with a side length of 20 pixels.
The output of step two is a vector containing a binary no face classification score, a
binary face classification score, BB regression offsets, and the three pose estimation
angles. A threshold on the binary no face classification score and binary face classification
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score decides, which BBs is further processed by applying NMS and a calibration with
regression vectors to receive a sharper image. Due to false positives, yaw, pitch, and
roll angles are ignored in step two. Applying NMS in step two and not in step one is
different from most other approaches in HPE, e.g. Florea et al. [104]. Step three is a fine
detection and pose estimation CNN, another threshold filters the view remaining BBs
coming from step two resulting in a minimized inclusion of false positives. The highly
complex network processes the final BBs with high accuracy outputs of yaw, pitch, and
roll angles determining the final HPE [108]. The subimages denoted by the BBs include
always the RGB channels and not any extracted features, as luminance for example. The
inclusion of all RGB channel information in all involved CNNs by Wu et al. [108] is a
further difference other state of the art works. The training images are scaled to 10, 20,
and 40 pixel side lengths of a square enabling the Wu et al. [108] approach to detect
small faces in an image accurately as depicted in Figure 2.22.

Figure 2.22: Multiple detected faces with their 3D rotational axes: x red, y green, and z
blue [108].

In the ARnatomy application, the coordinates, face landmarks, and the yaw, pitch, and
roll angles from HPE are used to position the anatomy models queried from the mobile
DB.

2.6 Mobile Databases

Storing data between different program invocations is named persistence [109]. Rational
DBs persist data as relations, i.e. a presentation in tabular form meaning a set of tables
[109] consisting by rows and columns, and offer relational operators to users or clients to
manipulate the persisted data. Applications having high data usage depend non-relational
or relational DB as persistence optimization and speedup. The DBs are queried via raw
DB operations or framework APIs providing DB operations as abstraction. Persistence
influences not only stored data, but rather execution time, energy consumption, and
programming complexity. Energy economics remains as one of the key considerations in
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mobile application development, since application energy consumption surpasses battery
capacities [110]. Research literature on efficient energy usage addresses programming
patterns, modeling, component usage, best practices, lifecycle, general program analysis,
and detailed program analysis but misses detailed persistence studies. Song et al. [110]
tested eight DB frameworks designed for mobile devices with limited resources for their
energy consumption, performance, and programming effort on an LG LS740 smartphone,
with one Gigabyte (GB) of Random Access Memory (RAM), eight GB Read Only Mem-
ory (ROM), 131.2GHz quad-core Qualcomm Snapdragon 400 processor, and Android
4.4.2. The tested frameworks are Android Structured Query Language Lite (SQLite),
ActiveAndroid, greenDAO, OrmLite, Sugar ORM, DBFlow, Java Realm, and Paper, using
the SQLite DB engine as well as Realm, which is a NoSQL DB engine.

Energy consumption is calculated by the time current of the device battery. The Monsoon
Power Monitor revealed the average current and the current during execution time, which
is higher than the average current. The current during execution time is determined
by the load put on the CPU, hard disk, and RAM. Performance is measured with the
overall execution time of a whole DB transaction and the involved DB operations. The
frameworks using a SQLite engine with the Android API measure only their CRUD
operation times. Uncommented Lines of Code (ULOC) is a software metric used to
measure the programming effort put into a computer program by its uncommented
source code line count. The software metric Uncommented Lines of Code (ULOC) is
applied to measure the programming effort of a computer program. Despite other existing
measurements, ULOC is still frequently used in literature to measure programming effort.

An adopted version Java DB benchmark named DaCapo H2 [111] is used for testing.
The H2 DB engine is replaced with SQLite or Realm to be able to use the benchmark
in the Android environment. DaCapo contains high amount of data, which change to
simulate bank transactions involving data from a real production environment. DaCapo
encompasses of 12 complex tables, 11 relationships, in total 120 columns, and complex
DB operations being transactions, batching, and aggregations [110]. With the DaCapo
benchmark the results are as follows: ActiveAndroid has the best performance and most
programming effort both originating in its unexceptional use of the raw SQLite API and
the least amount of DB operation invocations due to its caching mechanism.

DBFlow has the worse performance and less programming effort than ActiveAndroid, but
more than greenDAO, and is considered by Song et al. [110] to have the best balance
between performance and programming effort [110]. greenDAO has middle performance
and the lowest programming effort. Sugar ORM and Java Realm had the worst perfor-
mance. The same data inside a transaction can cause different CRUD and other DB
operation invocations on different frameworks. Hence, the Android Object Relational
Mapping (ORM) benchmark involves a more fine gained micro benchmark than the
macro benchmark DaCapo on the low level CRUD operations. The CRUD operations are
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additionally taken into account for the evaluation of execution time, energy consumption,
and programming complexity. With focus on the low level CRUD DB operations, the
results for the frameworks on the Android ORM benchmark are ordered descending by
their best performance: Android SQLite, greenDAO and DBFlow, OrmLite, Java Realm,
Paper, Sugar ORM, and ActiveAndroid. Paper and DBFlow have the lowest programming
effort and the latter can be generally recommended having the best balance between
performance and programming effort in relying only on CRUD operations. When the
dominating operations are select or delete, Sugar ORM should be omitted, on insert
operations DBFlow, and on update operations Java Realm. The evaluation of the ORMs
has different results with different testing granularities.

For a more practical approach than testing just the CRUD times and counting the ULOC,
a numerical model named Performance, Energy consumption, and Programming effort
(PEP) is introduced [110]. PEP includes weights for the developer’s preferences. The
properties of each framework in the acronym PEP are all included in the numerical model
weighted with two parameters denoting the preference performance or programming effort
of a developer and the developer’s expectation of the transaction volume in the DB. For
DaCapo 40 and 1,500 and for Android ORM benchmark 1,025 and 20,025 transactions
are executed. DBFlow has the best balance between performance and programming
effort with high transaction volume on the DaCapo benchmark, ActiveAndroid the best
performance with most effort in the PEP model. Paper has the best balance between
performance and programming effort with a low transaction volume on the DaCapo
benchmark. Above 10,000 transactions in Paper, the scalability becomes a problem and
Android SQLite or greenDAO are recommended. Paper has the best balance between
performance and programming effort with a low or high transaction volume on the
Android ORM benchmark. Only on high transaction volumes, Android SQLite has the
best performance with most effort in the PEP model.

2.7 Software Development Kits

As foundation for the development of an AR application, a software framework or a SDK
is required. Developers need to know the capabilities and constraints of a framework to
create the best application possible. In Table 2.1 short overview of currently popular
and maintained AR frameworks with their most important features is given. All SDKs
in Table 2.1 have a Unity 3D plugin except AR.js, which is developed only for the usage
on the Internet. As treated in Section 2.1.2, V-SLAM with its derivations is the state of
the art in markerless AR.

With time constraints, it is nearly impossible for a developer to quickly get an overview
of the SDKs, which use the most advanced SLAM or V-SLAM techniques. Basic AR
functionality for creating simple applications are free of charge and more complex and
efficient applications using V-SLAM or other key features force the developer into pay-
ment. Free SDKs with V-SLAM and markerless AR are only ARCore [22] and ARKit
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ARCore [22] x x x x
AR.js [112] x x x x
ARKit [113] x x x x

ARToolKit [114] x x x x x x
EasyAR [115] x x x x x x x
Kudan [116] x x x x x
Pikkart [117] x x x x x
Vuforia [118] x x x x x x

Wikitude [119] x x x x x x x

Table 2.1: Overview of AR frameworks with their most important features [120, 121, 122,
123, 124, 125].

[113] from the two technology companies Google and Apple. The similarities of ARCore
and ARKit are of the usage of monocular V-SLAM combined with device sensory data,
ambient light estimation, vertical plane detection, and horizontal plane detection.

During research on which technology will be used in this master thesis, Google’s Android
documentation seamed to be more readable and details easier to find. Time constraints
where a huge factor in the decision making process for this master thesis. The Java
Native Interface (JNI) is a foreign function interface programming framework that enables
Java code running in a Java virtual machine (JVM) to call and to be called by native
applications and libraries written in other languages such as C, C++, and assembly.
A Native Development Kit (NDK) is used to generate native code bibliographies from
another programming language. ARCore [22] is programmed with Java and native C++
code can be included too via Java Native Interface (JNI) or Native Development Kit
(NDK). The documentation for the native inclusion of C++ was found a lot faster
for ARCore [22] than for ARKit. Additionally, I have already more than seven years
experience with Java and C++. ARKit can be programmed in Apple’s own language
swift or objective-c, two programming languages I’m unfamiliar with.

The embedding of face recognition via C++ libraries was cumbersome and costly in
terms of time, even with profound knowledge of the involved technologies, programming
languages, found documentation, and workarounds. ARCore [22] only partially supports
marker-based AR by allowing only 2D template-based AR recognition, whereas ARKit
supports full marker-based AR. Since only the markerless AR was considered to be
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used in this master thesis, the marker-based capabilities of both SDKs were negligible.
To use ARCore [22] one has to simply download sample files from the corresponding
Github repository and the Android Studio Integrated Development Environment (IDE).
To use ARKit, one has to register as Apple Developer to get an Identification (ID). As
finding general information and finding the documentation for ARCore was faster than for
ARKit, getting another ID and account was unwanted due to the overhead of registration,
password creation, password storage, and already more required time for general search
for ARKit than for ARCore.

Another reason for using Android were the lower prices of ARCore [22] supported mobile
devices compared with Apple mobile devices and the higher prevalence rate of Android.
For ARCore [22] usage a supported device was needed, and the cheapest one, being the
Nokia 7 Plus, was chosen. The same would have been applied to the usage of ARKit,
an iPhone supporting at least an iOS version 12. A private Android phone was already
available before the ordered Nokia 7 Plus was received. The private Android phone
enabled an early programming start of ARnatomy without ARCore [22] to save time.
Later, when the Nokia phone arrived, ARnatomy was solely implemented on it. Android
had a global market share of 87.3 % in 2018 [126]. A developer who wants to reach as
many users as possible should target the majority first and then the biggest minorities.
With all aforementioned considerations and experiences accumulated, time constraints,
and the overall ease of use witnessed in the Android ecosystem, a decision for the usage
of ARCore [22] was made.
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CHAPTER 3
Methodology

The methodological pipeline of this master thesis is depicted in Figure 3.1.

Figure 3.1: The methodological pipeline of this master thesis as Unified Modeling
Language (UML) flow diagram.

Section 3.1 treats the familiarization with anatomy and Anatomy Perspectives (APs) on
anatomy, whereupon all sequential decisions in this master thesis were made. Section 3.2
treats the investigation of the model Database (DB) adjudged for applicable in relation
to the model data format and data structure. With a generated and optimized DB, the
search of Head Pose Estimation (HPE) techniques and their implementation for minimal
rendering of one single model with the Augmented Reality (AR) framework ARCore
[22] was performed. Section 3.3 treats the technology investigations, installments, and
changes for interoperability, which were executed for a realtime and robust HPE. Section
3.4 treats the development and design choices, which influenced the gained knowledge
and experience about the identified technology to be used for the overall application with
consideration of software design patterns, guidelines, and designs for the Back-End (BE)
and Front-End (FE) . Section 3.5 treats the implementation and the different, nested
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technologies, which required several decisions on structure, data flow, User Interface (UI),
and visualization from the back- to the FE, based on the development and design.

3.1 Selection of APs

The study of organisms along with their parts is decidedly complex, has manifold
interrelations, and various manifestations, which all precipitate multiple APs an observer
can occupy. In this master thesis, solely physical or spatial anatomy is treated without
its influences from other circumstances, illnesses or anatomical changes of any form or
cause. Physical or spatial anatomy can be amended and newly categorized in non-spatial
and spatial anatomy to gain more insight in doing so. Non-spatial anatomy knowledge
includes terminology, taxonomy, and functions of structures. Spatial anatomy knowledge
includes position, orientation, extent, and shape of structures. Additionally to non-spatial
and spatial anatomy, Preim and Saalfeld [13] identified more differentiated AP:

• Macroscopic, wherein anatomy is observed with the unaided eye, essentially a visual
observation during or after a dissection.

• Microscopic, wherein anatomy is observed with light or electron microscopes allowing
spectators a subcellular observation.

• Regional, wherein anatomy parts are observed with emphasis on their regional and
biological interrelations with other anatomical parts or systems, e.g. the head,
thorax, blood circulation, blood-cerebral barrier, or the brain.

• Systemic, wherein anatomical systems are observed within the whole body, e.g.
cardiovascular system, immune system or endocrine system.

• Radiographic, wherein anatomy is observed with different kinds of medical imaging
as Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) for
example.

• Cross-Sectional, wherein anatomy is observed in the transverse body plane, which
is from left to right or right to left.

• Surgical, wherein anatomy is observed with focus on its relevance during an operation
to fulfil set objectives.

• Clinical, wherein anatomy is observed in terms of practical, applied medicine for
state of health changes.

• Comparative, wherein anatomy is observed in aspects of morphology, topology,
orthology, and pathology in different organisms.
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The requirements of an anatomical model DB change with the selected AP. The majority
of the above listed APs on anatomy are for medical professionals, highly interested
individuals without any medical profession or patients, and not for laymen of the general
public. Microscopic anatomy would increase the time and programming effort tremen-
dously, since subscellular AR renderings with zooming in and out for an illustration
would be required. Open Graphics Library (OpenGL) is a cross-language, cross-platform
Application Programming Interface (API) for rendering Two Dimensional (2D) and Three
Dimensional (3D) vector graphics. Cellular AR rendering and subcellular AR rendering
would require a development of an own particle Open Graphics Library (OpenGL) system
for AR with interaction. Systemic anatomy would require a full body pose estimation
algorithm with enough landmarks for correct synchronization to be able to visualize all
the single systems of anatomy. If only HPE is executed for the systemic anatomy, only
parts of anatomical systems would be visible or full anatomy systems would be excluded,
e.g. the genitourinary system.

Radiographic and cross-sectional anatomy would require too much resources for a mobile
device, as on the fly volumetric rendering from the 2D image data to 3D models is
computationally demanding [86, 89]. Preprocessed 3D model generation from sequential
2D radiographic or cross-sectional images is possible. Preprocessed 3D models would
lack the correct predefined position inside the human body, all generated models would
have no relative coordinates to human anatomy. Each preprocessed 3D model would
have to be positioned manually, which is a highly time expensive task. Surgical and
clinical anatomy would constrain the target group to highly trained professionals already
having a vast knowledge about anatomy due to their education and training. Surgical
and clinical expert staff may have the need for applications facilitating their profession
and not educating them in their profession. Comparative anatomy is the AP with the
two highest requirements on a DB. First, a link between anatomy models of different
organisms is needed and second, a decision, which from the all aforementioned APs are
chosen for juxtaposition. All APs except the macroscopic and regional AP build upon the
former two AP as required subset. So, all APs depend on the macroscopic AP and the
regional AP and the latter two APs form the necessary starting point in the anatomical
education of the general public. The macroscopic AP and the regional AP were selected
for their implementation in the developed mobile application named ARnatomy.

The names, definitions, and a hierarchical structure available as models on a DB are
required as an anatomical information minimum for all aforementioned APs. Only the
free, scientific, public available, flat file model collection Body Parts 3D (BP3D) satisfies
the requirements of the macroscopic and regional APs. Without the information of
macroscopic and regional anatomy, all other APs lack context, relation, orientation, and
observable content every human can make without any aid for the eye. For example,
the macroscopic and regional perspective of vessels in the cerebral region is depicted in
Figure 3.2.
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Figure 3.2: Macroscopic and regional perspective of vessels in the cerebral region with iris
and choroid from the eyes as Point of Reference (PR) from the BP3D flat file collection
[4].

Application extensions including any of the microscopic, systemic, radiographic, cross-
sectional, surgical, clinical, and comparative APs may be made upon the foundational
knowledge macroscopic and regional anatomy are constituting. As already treated in
Section 2.4, from Digimation [97], Visible Human Project (VHP) [98], TurboSquid [99],
BioDigital [100], ZygoteBody [15], and BP3D [4] only the last one is free, scientific, and
available for the general public and science. BP3D has additionally already anatomy
model positioning in its own coordinate system for the human body. All BP3D models
can be downloaded from a dedicated online preview, and all models of BP3D are linked to
the Foundational Model of Anatomy (FMA) DB [5]. Only the macroscopic and regional
APs are coherent with the models of the free, scientific, and public available BP3D flat file
collection. Any other AP selection would have made the BP3D flat file collection insuffi-
cient and would require the usage of the scientific BioDigital [100] or ZygoteBody [15] DBs.

The models of BP3D receive through FMA definitions, synonyms and a full anatomy
hierarchy of the human body. Macroscopic and regional APs along with the applicable
DB create advantages as well as disadvantages for programming, learning, and interaction.
As treated in Section 1.1, interactive 3D anatomy systems are equal to traditional learning
and allow the learners faster buildup of spatial abilities through manipulation. The
macroscopic and regional APs categorize anatomy, which can represented through simple
models. The macroscopic character of reducing the anatomy to its parts observable with
the unaided eye is equivalent to reducing the complexity anatomy model arrangement to
a minimum. Using rather simple models than sophisticated models imposes less cognitive
load on the user and less foreknowledge is required for the learning of the rendered
anatomy model.
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Without additional APs, model interaction complexity and interaction paths remain
simple and the user’s attention and cognition can focus more on the anatomy macroscopic
and regional exploration. In a highly detailed and complex anatomy visualization, users
would require more cognitive capacities for orientation and interaction. If any interested
user who wants to know more or specific aspects of anatomy should be supported in
the future, other resources would be needed to be utilized as references to anatomical
lexicons. The naturally restricted number of models through macroscopic and regional
APs has a positive influence on the computational demand, overall loading time, and
simplicity of the rendering technique. Other constitutive APs on anatomy have a negative
influence on performance, as the model number along with their details, hierarchy depth,
and rendering specialization would exacerbate the issue of limited resources on mobile
devices. With more supported APs, a higher demand of programming skills is required to
create an application with no visible latency. Additionally to programming skills, more
needed time for programming is the result of supporting more APs, as more dependencies,
required by the additional models, have to be considered with more potential error
sources. An introduction of a new anatomical perspective in a mobile application tends
to make software structure, its internal relations, malfunctions, and planning far more
complex. Hence, only the macroscopic and the regional APs, primarily imposed by the
two identified DBs, are in use.

3.2 Selection of Databases
As BP3D is the only flat file collection found to fit the requirements imposed by the
macroscopic and regional APs, the search for the most efficient format and structure
for mobile environments came to the conclusion that Android SQLite is the best choice.
As empirical tested by Song et al. [110] and already treated in Section 2.6, Android
SQLite has the best performance when focused on low level Create, Read, Update and
Delete (CRUD) DB operations. The programming effort of Android SQLite is located
in the higher field of the average Object Relational Mapping (ORM)s tested by Song
et al. [110]. Only the read operation of the CRUD are needed in 99 % of the applica-
tion during runtime, reducing the programming effort solely to few, simple, direct, and
minimal queries for numbers, strings, and models. The remaining 1 % is the creating
DB operation of writing already chosen anatomy indices in a dedicated table with one
column named recents to have a recent anatomy list. Despite the higher effort Structured
Query Language Lite (SQLite) has compared to other persistence frameworks [110], its
integration in ARnatomy was chosen due to the following advantages.

Android supports SQLite, since API version one and it works out of the box, no additional
dependencies are needed, which keeps the application size and the computational demand
low. An official Android documentation of its API to SQLite exists, and established a lot
of resources, questions, experiences, and caveats on the web over the years. No additional
knowledge gain from tutorials or documentation was required as the author of this master
thesis had already knowledge of SQLite, only the Android API documentation had to be
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read. Writing or reading data from an SQLite3 DB can be 35 % faster than writing or
reading from the file system [127]. Object Relational Mapping (ORM) is a programming
technique for converting data between incompatible system types via a virtual object
database for object data conversion and transmission. Operation on a low level enabled
own creation of data retrieval without the management by an additional dependency
adding, energy increasing, size increasing, and time intensive ORM [110, 128]. All upper
advantages saved time required by other application features.

The usage of ORMs can create an overhead for CRUD operations, especially on more
complex object structures to load objects consisting ofother objects, including reference
circles in the DB, can make DB queries heavy and therefore slow. ORM caching, relations,
additional dependencies, declarations, configurations, source code adaptions, and their
optimizations have a high time and resource investment. ORMs should be carefully
treated when new APs ought to be supported, since APs make the loaded objects more
complex. Nevertheless, adding other APs could change the currently minimal program-
ming effort with SQLite as the model and data structure would change too.

Especially the more detailed APs as microscopic may have higher transaction volumes and
would move the choice from SQLite to Paper or DBFlow [110], which had the best balance
between programming effort and results if the majority of queries are select. If more
than one other AP ought to be supported, transaction volume, scalability, used resources,
and energy consumption become more important factors and impact proportionally the
increased effort making Paper the best choice in terms of balance. Best performance in
terms of CRUD operation speed and energy consumption has again Android SQLite with
the most effort. The lowest performance has Sugar ORM and Java Realm due to their
caching mechanisms and high computational demand as well as high energy consumption.
After the AP assessment concerning DBs, the BP3D flat file collection and FMA DB
structure and their interrelations were investigated.

3.2.1 Body Parts 3D

BP3D contains only anatomical models, lacks textures for rendering, and is not designed
for an extension via additional information or simple texts. If a DB extension for more
supported APs is required, a third-party DB utilizing the FMA indices is advised. Flat-
Files are ordinary, unstructured files on the operating system’s file system. The relations
of single BP3D models with one another or with FMA datasets are defined in additional
.txt flat files. So BP3D is a flat files collection and not a DB. Transforming a flat files
collection into an SQLite DB in this master thesis is beneficial as overall model scaling
and conversion are mandatory to use the models in the AR framework ARCore [22].
Different ethnicities and races have different anatomical features making the best fitting
humans for the BP3D Japanese, as the models from BP3D are created by and based on
Japanese people. Other ethnicities than Japanese ones may experience superimposition
discrepancies. A solution would be the deformation [129] of anatomical models to the
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detected face proportions and the mobile computation resources are limited as well as
the time constraints for this master thesis reserving model deformation for future work.

3.2.2 Foundational Model of Anatomy

The BP3D .obj file commentaries contain a Primary Key (PK) to the FMA DB. A
conflation of FMA and BP3D can directly be made and is unidirectional, since FMA has
more than 100.000 entries and BP3D only 3.493, and only the latter links to the former.
The authors of BP3D do not have sequential updates meeting the sequential updates
of FMA. As BP3D has its version limits and is the only DB fit for this master thesis,
the decision to use macroscopic and regional APs imposes DB 1:m relations between an
anatomy model entry and its synonyms, definitions, and hierarchies.

3.2.3 Conflation to Own Database

An own SQLite DB optimized for efficiency and small size is created from the raw BP3D
text and object files, which are linked with the reduced FMA DB. Adding APs would
add more relations in the DB as well as all involved datasets. Further, adding APs
would cause more preprocessing in the form of model scaling, format conversion, and
merging of single DBs into one monolithic DB are mandatory. In Figure 3.3, an En-
tity Relationship (ER) model depicts the own, created, minimized, unified ARnatomy DB.

Figure 3.3: ER model of the created ARnatomy DB from the conflation of BP3D and
FMA.

All other tables in the own DB than the table FMA in Figure 3.3 are added via an own
written bash script iterating the generated FMA SQLite DB to insert the needed data
into the BP3D SQLite DB as conflation. The table fma is the most important one, as
it contains unique entries of the now unified FMA Identification (ID) as PK and the
column renderable as the corresponding BP3D model. The column name renderable
refers to the now converted model format and the wording in the ARCore [22] framework
documentation and source code used for rendering. All other tables than fma contain
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foreign keys adding properties to the PK of the table fma. The tables definitions and
synonyms only add optional or multiple definitions or synonyms to an fma table entry.
The table elements contains other fma table PKs and states thereby, which fma table
entry consists of other fma table entries. The table hierarchy defines the original FMA
hierarchy, which is equal to the anatomy hierarchy in the human body. Read and create
queries with SQLite to the generated DB worked immediately and during application
testing no delay was experienced. Consequentially, only the native Android SQLite API
[130] is used for DB transactions. The DB is freely extensible due to the nature of SQLite.
New data may be added to the own DB when APs are added to the application, without
any changes of already existing DB or source code structures.

3.2.4 Proposal of the Universal Anatomy Index

The work with the BP3D and FMA and the own created DB showed that no concept
is applied for the single indices of both. In the following, a proposal for an indexing
concept named Universal Anatomy Index (UAI) for past, present, and future anatomical
DBs is made. The intention of UAI is to standardise anatomy indices as International
Organization for Standardization (ISO) number, foster DB merging, and to have a
numerical logic inside all single anatomy indices. A website to search UAI may be
installed to show the corresponding anatomy models and to provide hyperlinks to
anatomical encyclopedia. The digits of an UAI number are uniquely defined by the
established anatomy taxonomy as described in the following paragraphs:

Digit 1: Defines the region of anatomy from the bottom to the top of a human body
equal it’s numerical value: 0 Feet, 1 Legs, 2 Groin and Gluteus, 3 Abdomen and Lumbus,
4 Thorax and Dorsum, 5 Arms, 6 Hands, 7 Neck, 8 head.

Digit 2: Defines the type of anatomy: 0 Connective Tissue, 1 Adipose Tissue, 2 Fibrous
Connective Tissue, 4 Cartilage, and 5 Bone.

Digits 3 and 4: Define together the 10 main systems of anatomy: 00 Circulatory, 01
Digestive and Excretory, 02 Endocrine, 03 Integumentary and Exocrine, 04 Immune
and Lymphatic, 05 Muscular, 06 Nervous, 07 Renal and Urinary, 08 Reproductive, 09
Respiratory, 10 Skeletal, and 11 Hematopoietic.

Digits 5 and 6: Define together the main terms of anatomical location: 00 None,
01 Superior, 02 Inferior, 03 Anterior, 04 Posterior, 05 Medial, 06 Lateral, 07 Proximal,
08 Distal, 09 Central, 10 Peripheral, 11 Superficial, 12 Deep, 13 Dorsal, 14 Ventral, 15
Cranial, and 16 Caudal.

Digits 7 - n: Define the actual anatomy in an order considering their already assigned
index digits.
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As an example, the index 8510001 may identify the frontal bone. The last digit in
the previous example is arbitrary chosen and all other digits before have a descriptive
character. Memorizing the logic of the first six digits makes the UAI human readable
and fast to decode. UAI has the potential to uniquely identify digital anatomy models
worldwide. References, updates or linkage to other DB would be easier as the indices
would be equal. Fields and people often using digital representations of anatomy save
time, descriptive metrics, additional labeling, and a general overhead. Search and iden-
tification are facilitated and may be verified by an online mechanism on a web page.
Interoperability between technologies using anatomical models is improved.

The numbering is the core issue, multiple trained professionals with proper knowledge
about anatomy need to validate and verify the structure in the aforementioned paragraphs
or may change it for a better mapping of anatomy to a final unchangeable index. A
change in the UAI after its public release is impossible, since the public release would
define the purpose of uniqueness and standardization. The indices may be used with
marker-based AR to render the anatomy on books, on screens or other platforms and
recognized by Quick Response (QR) codes or function as initialization for markerless AR
application start. In general, further standardizations and cross linkage in health care, its
institutions, the organizing programs and data models in use, patient records, as well as
patient consultations can be made accordingly and with one common feature, the UAI.

3.3 Selection of Head Pose Estimation Technology
Asynchronous model loading, HPE, and the model’s synchronization with the tracked
face in position, rotation, and scaling on mobile device can become a problem due to the
high computational demand. As the optimized, minimal, condensed, monolithic SQLite
DB was finished, the state of the art in HPE was marked a start of implementation. An
investigation of how the single models from the DB can be rendered on their correct
facial positions coming from HPE technology in ARCore [22] was conducted. Efforts
were made to integrate one of the current HPE papers, which claim to be the state of the
art using Cascaded Convolutional Networks (CCN)s or Convolutional Neuronal Networks
(CNN)s [104, 105, 108]. Other authors of identified works [101, 102] having not state of
the art results and still a good performance in speed and accuracy were contacted too.
Unfortunately, the result of the started investigation on state of the art HPE technology
was that the source code could not be retrieved nor executed as third-party dependency.
For ongoing progress and development another third-party software was utilized.

3.3.1 Third-Party Dependency

The work from Bertók and Fazekas [103] was identified as third-party dependency. For
face detection on a computer and on an Android mobile device, Bertók and Fazekas
[103] claimed to have the same source code and to provide access to the roll information,
pitch information, jaw information, and facial landmarks needed for model rotation and
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model positioning. Computer source code was already finished and the Android source
code was be made public, and in an early development status. Until the change of the
development status from Bertók and Fazekas [103], various programming tasks, UI design
drafts, implementation, bugfixing, and writing for ARnatomy and this master thesis
was conducted. At some point in the own development of ARnatomy, the integration
of the third-party HPE dependency could no longer be prolonged and a master thesis
stagnation settled in. An own detailed time intensive investigation of the C++ source
code repository on Github named face-api from Bertók and Fazeka [103] was conducted.
The findings of the own investigation showed that the code from Bertók and Fazeka
[103] is a wrapper [42] of an open computer vision library named OpenCV [91] combined
with a machine learning library named dlib [92]. Combined, OpenCV and dlib offer
tools for HPE in C++. Especially dlib utilizes the work of Kazemi and Sullivan [131]
for fast face alignment. A decision was made to implement an own API of both public
available, open, and free libraries OpenCV as well as dlib on the C++ side of ARnatomy.
The facial landmarks coordinates, coming from the C++ side, are used for the anatomy
model synchronization on the Java side. The own C++ implementation consumed a
considerable amount of time and promised to be manufacturable and independent.

3.3.2 Dlib

The algorithm of Kazemi and Sullivan [131] used in dlib [92] for face recognition is a
cascade of regression trees performing on picture element (pixel) features, which are
sparse subsets of intensity values denoted by facial landmarks. As regression introduces
geometrical invariance into the process of indexing through the different regression steps,
no further prequesites are needed. The regression estimates lie naturally in a linear
subspace of the initial estimate being the average shape of all training data constrained
by a generic face detector Bounding Box (BB). Regression learning is performed via
triplet generation consisting of the original image, its initial shape estimate, and an
update step to fit the given shape, being a model having facial landmarks. Each initial
shape estimation is uniformly sampled with gradient tree boosting through a sum of
square error losses and provided as input for the next regression until sufficient accuracy
is achieved. The cascade regression face detection reduces the detection label in one
millisecond and supports partial or uncertain labels as output too [131].

An Application Binary Interface (ABI) connects two binary program modules via an in-
terface defining how data structures or computational routines are accessed in a low-level,
machine code. The opposite is an API. Various caveats, configurations, and workarounds
for special version compatibilities between the needed technologies Native Development
Kit (NDK), cmake, OpenCV [91], dlib [92], Java Native Interface (JNI), and the target
mobile phone Nokia 7 Plus Application Binary Interface (ABI) configurations were
only found via exhaustive search on web pages about help, questions, errors, and issues,
where previous developers figured correct configurations by time consuming trial and
error. Without documentation of programs, trying to understand the programs features,
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properties, input, and output is can only be done with trial and error. Experiences from
other developers with similar problems and their workarounds or solutions shared on
the Internet helped to have progress in the NDK and dlib configuration phase. Official
documentation of Android NDK with JNI formed only theoretically ideas and no practical
outcomes nor minimal examples.

Meticulous software engineering, debugging, refactoring, and source code optimization
let to an asynchronous, harmonic interplay of all used technologies. The interplay of
technologies was to slow, ARnatomy had latency making its usage and the debugging
impossible. Optimization techniques were searched and own approaches for more speed
and less overhead between Java, NDK with JNI, and C++ were tested. Fortunately, a
new version publication of ARCore [22] relinquished all aforementioned grievances and
disadvantages.

3.3.3 ARCore

The reasons for the usage of ARCore on Android are fast found extensive documentation,
NDK support, higher customization possibilities of Android than iOS, a cheaper Android
mobile devices, higher world market share of Android, minimal example application
downloads for development start, a more familiar Integrated Development Environment
(IDE), and seven year experience in Java programming all treated meticulously in Section
2.7. The research on the state of the art concerning AR frameworks determined the
usage of ARCore [22] as AR rendering framework before the first bit of development
was conducted. On the 15.02.2019 ARCore [22] released a new version supporting face
tracking and providing an 3D mesh face mask with 468 vertices and the mask’s rotation
synchronized on each frame with the tracked root face node in the ARCore [22] scene.
After short tests all decelerating and complex dependencies being, NDK, cmake, OpenCV
[91], dlib [92], and JNI, which made the source code cumbersome and brittle, were
removed for the fast realtime HPE of ARCore [22] on the front camera of a mobile device.
The single vertex world coordinates of the provided mesh face mask are read and the
anatomical AR models are set accordingly without any latency. The final outcome of
the development is depicted in Figure 3.4 on the left and the frontal wireframe used for
model positioning on the right.

Beards, glasses, eating with cutlery, chewing, drinking from cups or glasses, and long hair
beside the eyes do not have any effect on recognition performance and positioning of the
face meshes with ARCore. The standard horizontal and vertical plane detection mode of
ARCore on the back camera is additionally used in ARnatomy for single anatomy model
rendering as depicted in Figure 3.5.

With the single anatomy view activity depicted in Figure 3.5, the user can focus solely
on isolated anatomy for better learning. Figure 3.4 and Figure 3.5 show the full potential
of ARCore version 1.7.0 rendering the macroscopic and regional AP. In the 2D model
preview without AR and the back camera 3D AR rendering depicted in Figure 3.5 colour
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Figure 3.4: Left: AR bone and organ models synchronized with the detected face. Right:
Generated image of the ARCore .fbx frontal face mesh indices in wireframe view [132].

Figure 3.5: View of the frontal bone 30 centimeters above the horizontal floor plane with
ARCore points for orientation.

errors are observable. There is no certainty that shader errors are the cause, since in the
front camera all rendering has no colour errors albeit the model creation and rendering
source code is in all three cases the same. The disadvantages of ARCore [22] and its
HPE are that both are only indirectly accessible via the AugmentedFace class and the
facial mesh, all other source code is proprietary and with ARCore 1.7.0 only the frontal
camera can be used with HPE by ARCore.

For now, only HPE is supported by ARCore limiting the superimposition of anatomy to
the head. No coordinates are provided for the neck, tests showed that realism, immersion,
and accuracy suffer by using jaw coordinate as root location and adding an offset for
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correct neck positions. A full body pose estimation can be included in the future by a
third-party framework [133, 134, 135, 136, 137, 138, 139, 140] , the delivered coordinates
should to integrate themselves seamlessly into the ARCore position and rotation data.
The most discrepancies were experienced on x axis movements or rotations of the neck
and the head. When the head moves the neck has a lot less movement, especially its
lower part connected to the shoulders. Additionally, some neck anatomy is missing in
the BP3D flat file collection, i.e. the external carotid artery. This master thesis follows
the mentioned reasons against supporting neck anatomy or other anatomy than the head
anatomy and only supports the latter.

3.4 Development and Design Choices

With the knowledge and experience about the identified technology to be used, choices
for further application development and their implementation where made. Back-End
(BE) refers in software engineering to the data access layer of a piece of software, or
the physical infrastructure or hardware. The BE counterpart is the Front-End (FE).
Front-End (FE) refers in software engineering to the data presentation layer of a piece of
software, or the physical infrastructure or hardware. The FE counterpart is the Back-End
(BE). The application can be subdivided into two big areas, i.e. the BE and FE. The BE
provides data from the DB and the framework or API the FE is connected to. The FE
presents and renders the data of the BE.

3.4.1 Back-End Development and Design

The native Android SQLite API is amended through a factory software design pattern
[42] for asynchronous queries to the DB with no FE latencies. The asynchrony of the
BE is intended to let UI thread of the mobile device, the FE, render a smooth anatomy
model rendering, animation rendering, and latency free interaction creating the basis
for usability and User Experience (UE). Using an API for the DB access enables BE
and FE decoupling for minimal data structure changes and code refactoring inherent
with additional AP extensions. No design choices were made for the DB, as the DB
was created due to the data format .sfb imposed by ARCore. Only models having
the ARCore format SceneForm Binary (SFB) can be rendered by ARCore as AR. The
conversion of a model to an .sfb file performs optimizations as vertex reduction, vertex
position normalization, uniform scaling, and barycenter relocation for rendering .sfb
efficiently on a wide range of devices. Through the .sfb conversion, the need for fast,
organized model retrieval was required and SQLite has the best performance [127, 110] of
all considered DB solutions [109, 110]. During the own DB generation, the focus was laid
upin the DB optimization too for excluding future DB optimization iterations. Hence,
the requirement of an overseeable, minimal in structure and size DB was fulfilled before
it was required by the mobile application development, mobile application design, and
mobile application environment.
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Basic data structure of an anatomy entities and their data flow through the BE and
the FE are treated in the remaining paragraphs of this section. The anatomy source
code objects filled by DB data should have one core model, which is a pure DB table
representation with few additional meta data info, e.g. if the source code object is fully
or partially loaded. Further usage or renderings of the anatomy objects in the FE should
use the wrapper software design pattern [42] to easily extend the anatomy objects as
needed and to attach more meta information required for rendering in the FE. Especially
the relation of BP3D and FMA mapped into the generated DB will need to make use
of the wrapper pattern or container node objects. The container node objects should
create, load, and contain the anatomical hierarchy represented in the BE as a tree. The
anatomy objects within their hierarchy need another link to their final rendering object in
ARCore [22], since only then the textual information about an anatomy entity, anatomy
appearance, hierarchy, and its final AR visualization are coupled with each other and
can then also be decoupled.

Due to the anatomy hierarchy in FMA and in the own DB, models along with their
hierarchy need to be queried in a background thread recursively. A mechanism to
determine the hierarchy levels to be queried is necessary, loading the overall hierarchy
of just one model may load various other models, which are not needed. Loading the
overall model hierarchy increases the DB transaction volume proportionally to the data
inside a model hierarchy. As all models are stored as Binary Large Objects (BLOBs),
loading the full hierarchy requires a computational demand far too high for a mobile
device. Based on the above requirements for the BE, ARnatomy is efficient and open for
further extensions and more supported APs in the future.

3.4.2 Front-End Design and Development

The FE visualizes data provided by the BE and should have the same basic programming
attributes as the BE, high performance, accuracy and low latency. As the FE presents
data to the user, additional attributes for the design and the development of the FE are
required. Identified attributes required by the user for learning is easy comprehension,
low cognitive load, automatic start of anatomy AR rendering, intuitive interaction, and
immersive interaction. The identified attributes for the FE are additionally responsible
for a good UE and a good usability. A simple interaction has a low cognitive load, which
is beneficial for the user as he can focus more on the visualized content as well as learning.
The visuals should be reduced to the mere anatomy for minimal distraction allowing
the user to focus the attention more on learning than on visuals or interaction. Less
distraction and the opportunity of more focus facilitates the discovery-based learning
through higher immersion [27]. Additionally, the comprehension of anatomy spatiality is
improved [77] and the short-term memorization of the learned content as well as spatial
performance is increased [16]. Three activities, Face Activity (FA), Hierarchy Activity
(HA), and Single Activity (SA), should be implemented with smooth and fast transitions
between them for preserving the generated mental picture and to not generate multiple
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mental pictures of the same content [33]. In the FA, when the user looks into the enabled
front camera the face of the user is superimposed with synchronized AR anatomy models
automatically. The model interaction relies on simple swiping to remove anatomy out of
the line of view to dissect the rendered anatomy into deeper layers. The swiped anatomy
is added to a cache list, which holds anatomy and enables the user to readd anatomy back
into its original position via swiping the anatomy itself. Tapping on an anatomy at any
time shows FMA information or renders further possibilities to access the information.
Tapping must show at least the anatomy name for simple external labeling [25], learning
[27], exploration, and interaction. Long taps show all information available in another
view as rendering the full anatomy information would occlude to much space on the screen.

Rendering big labels occluding large portions of the screen may cause lower usability
as the interaction possibilities are would be consumed falsely by the big labels. With
rather big labels, the user has to move his head out of the camera view, which may be
eliminates the ARCore [22] HPE or labels may accidentally capture interaction gestures
by overlapping other AR target visualizations. Hence, only simple non-superimposed,
external labels [25] containing only the anatomy name in the FA should be rendered.
Anatomy filtering by anatomy type or anatomy region must be added in the form of
AR to be neutral to the generated immersion. Anything negatively affecting immersion
affects UE negatively [27, 76]. Filtering criteria for anatomy regions in the face [141]
ordered occipital are frontal (forehead), ocular (eyes), nasal (nose), buccal (cheeks), oral
(mouth), mental (chin), and cervical (neck). Filtering criteria for anatomy types [141] in
the face, determined by the BP3D are bones, muscles, vessels, nerves, organs, and teeth.
As bones and teeth are similar and the latter are normally seen frequently, bones and
teeth are separated into two filtering types as depicted in Figure 3.6.

In the HA, the FMA hierarchy is not rendered with ARCore [22]. Instead of AR, only
anatomy texts are presented allowing the user to browse through all name, synonym,
description, and model datasets similar to a file explorer. If the optional anatomy model is
found in the DB, the anatomy model is rendered in 2D within a rectangle as preview with-
out AR. Fast transition to the FA and the SA preserving the currently viewed anatomy
model are accessible via a tap. The presented anatomy hierarchy can be amended at
one level upwards, which always loads the parent with all its children, or downwards,
which loads just the children. A left margin multiplied with the nodes current hierar-
chy level represents the parent child relation of the single, textual anatomy representations.

In the SA, the user uses the back camera of the mobile device to capture a surface
whereon a single anatomy is rendered in AR. The single anatomy rendering is intended
for an isolated observation and free interaction with anatomy without distractions or
other anatomical context as already depicted in Figure 3.5. Swiping interactions repo-
sitions the viewed anatomy on the detected surface to give the user countermeasures
for recovering from bad model and surface contrasts. Tapping on anatomy shows all
anatomy information available in the DB, since no other anatomy is rendered and no
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Figure 3.6: Anatomy region and anatomy type filtering through the AR filter options
beside the detected face.

other anatomy can be occluded.

The UI was reduced to a minimum for an intuitive, non-complex, noninvasive, immersive
appearance to only render content necessary in the moment to let the user focus as
unimpeded as possible concerning the UI on the AR anatomy. A Floating Action Button
(FAB) performs the primary, or most common, action on a screen. It appears in front
of all screen content, typically as a circular shape with an icon in its center. In this
master thesis, the actions of a FAB are overloaded depending on the current status. A
Floating Action Button (FAB) lets the user access the FMA hierarchy by providing a
textual search with automatic suggestions according to the Google Material Design [37].
The search FAB location is standard on the bottom right for fast access without a full
finger stretch. A text search field is in ARnatomy a field where the user can enter text to
search anatomy. The search FAB action is expanding or, if already expanded, starting
the anatomy text search field. A collapse of the text search field can be done by the
text search field via an inline close button. A tap on a single suggestion or search result
shown above the text search starts the HA to view detailed anatomy information and to
explore anatomy hierarchy. A menu FAB is allowed by the Google Material Design [37],
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if appropriate to the cause. The menu FAB location is on the bottom left and expands
to a stack of actions related to the current activity being the FA or SA. With the BE
and FE development and design choices made, their implementation started.

3.5 ARnatomy Rendering

The activity workflow is depicted in Figure 3.7.

Figure 3.7: UML activity diagram showing the workflow of the FA, HA, and SA. The
view results are determined by the user through the search and allows users’s to go from
the FA to the HA.

The FA is the main activity wherein the user can interact with 3D rendered AR models
synchronized with his face. The HA shows additional hierarchical information and 2D
rendered models of search results or labeled anatomy from the FA. The SA can only be
accessed by the HA and renders single 3D AR models on detected planes for isolated
exploration.

Focus ought to be laid upon activity translations to preserve the generated mental
picture from the user as long as possible for benefiting from constructivism and embodied
cognition [75]. An AP amendment would effect the three single activities, as reasonable
translations between the new AP and all existing activities would have to be implemented
to preserve the created mental picture in the user’s mind. For example, the introduction of
radiographic or cross-sectional APs in the form of CT image or MRI volume segmentation
[86]. The segmentation volume could be cut by the ARCore face mesh as in standard
Volume Clipping (VC) [89]. Contained in the volume segmentation would be the single
anatomy objects already positioned through all the combined information from the single
images. The inherited anatomy positions would exchange the current dependency on
preprocessed .obj models loaded from the own DB for on the fly volume segmentation or
preprocessed data models. Further ARCore [22] version upgrades impeded by Sceneform
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Issue 613 [142] would be eliminated too. Dedicated works [143] leverage medical image
data as CT and MRI into cinematic renderings, depicted in Figure 3.8, which has a
higher resolution than the BP3D flat file collection currently used.

Figure 3.8: Left: Skull interior with the midline as clipping plane. Right: Bony surface
rendering. Left and right: Renderings of a non-constrast-enhanced CT [143].

The high resolution can be a problem for mobile devices as it requires more resources
in terms of Central Processing Unit (CPU) time, disk space, and Random Access
Memory (RAM) space. As a possible solution is that the rendering resolution may
adapt automatically to the current available resources of the device. ARCore’s 3D mesh
face mask with 468 vertices may use few carefully selected synchronization points to
synchronize the segmentation volume with the tracked face with rather low computational
demand. AR volume segmentation as idea to help patients in understanding or medical
staff during consultations with radiographic or cross-sectional images remains as future
work. Laymen in the general public would lack the required knowledge to learn or gain
insights of radiographic or cross-sectional images. Activity development was in reversed
order as the user visits the activities depicted in Figure 3.7, since the SA has the least
amount of complexity and the FA the most. However, in the following an elaboration
of the three activities and the purpose of their rendering in the same order as the user
visits them. Section 3.5.1 treats the FA, Section 3.5.2 treats the HA, and Section 3.5.3
treats the SA.

3.5.1 Face Activity

In the FA, the user can view HPE-synchronized 3D anatomical AR models with their
names. The FA depicted in Figure 3.7 uses the front camera and superimposes the
tracked faces with anatomy models rendered in AR and allows the user to explore his
anatomy on the own body. On first application start up during the DB extraction, the
time is used to give the user simple clues on interaction via a dialog as depicted in Figure
3.9 on the left.

All other features beside the introduction dialog in the application are designed to be
intuitive, explorable, and hopefully self explanatory. The FA is the main activity and
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Figure 3.9: Left: The introduction dialog for basic AR interaction clues. Right: The
Android Toast message shown on search FAB tap to indicate that the database extraction
is ongoing.

first activity shown on each start up, the HA and SA can only be accessed through the
FA. On each new face detection the anatomy translates in one second on every device out
from the back of the face to its front. Intention of the back-to-front anatomy translation
is to create a mental picture of the own, synchronized, facial AR anatomy and to stir
imagination, curiosity, and interaction.

The camera in the FA is always the frontal camera tracking the 3D face mesh in the
captured video stream. Position and orientation of the camera and models are relative to
the face mesh, always known, and updated. As ARCore is proprietary, one assumption is
that the single coordinates of each frame create and update a facial covisibility graph.
A generation of a covisibility graph is similar to Oriented Features from Accelerated
Segment Test (FAST) and Rotated Binary Robust Independent Elementary Features
(BRIEF) Simultaneous Localization and Mapping (ORB-SLAM) for constant knowledge
of the position and orientation and more robustness with some smoothing algorithm
to prevent jittering. Phong lighting is an empirical model of the local illumination of
points on a surface. It describes the way a surface reflects light as a combination of the
diffuse reflection on rough surfaces with the specular reflection on shiny surfaces. The
illumination on all 388 rendered face models is Phong lighting. The stationary directional
lighting is used in ARCore to create more depth without any shadows, since real anatomy
is very dense and inner anatomy does not cast shadows on other inner anatomy. Having
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no anatomy shadow receivers lowers overall computation, particulary important on mobile
devices with many models. Specular lighting and reflections are excluded, since natural
anatomy has no metallic surfaces and the computational demand would rise with the
number of rendered models. ARCore and Sceneform [23] contain environmental High
Dynamic Range (HDR) light estimation, as depicted in Figure 3.10, since version 1.10
[144] and the Sceneform Issue 613 [142] limits ARnatomy to use Sceneform [23] version
1.7.0.

Figure 3.10: Left: Standard Phong lighting with shadows of a metallic model in ARCore.
Right: The same as left, but with environmental HDR light estimation, note the specular
light and model shadow adjustment to the natural lighting in the captured scene [145].

The light estimation would make the currently stationary directional lighting dynamic
in terms of intensity, direction, and attenuation for more realism and immersion, even
without specular lights. The rendering colours of the single anatomy types [141] are
adapted from Anatomography of BP3D [4], which are similar to reality. Different
colours for different anatomy types enhance the memorization of appearance, relations,
differentiation, position and orientation [146]. The single colours used for anatomy types
are depicted in Table 3.1.

As treated in Section 2.1.3, the immersion in the AR FA comes with benefits for learning
being increase of interest, motivation, and eagerness. Further advantages of immersion
are increased augmented emotional engagement [76], attention, concentration, satisfac-
tion, and spatial abilities [27]. The positive effect on short-term accuracy, speed in
fulfilling spatial anatomical tasks [16], and overall short-term performance improvement
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Anatomy Colour HTML-Code Anatomy Colour HTML-Code
Bones & Teeth • FFFFFF Gland • 173B0B
Muscles • FA5858 Ventricle • 2E2EFE
Brain • F4FA58 Cartilage • CCFFE6
Artery • 610B0B Cornea • 00FF00
Nerve • FA58F4 Iris • 000000

Table 3.1: Rendering source code colours of the mobile application similarly selected to
the Anatomography of BP3D [4] colours to differentiate anatomy easier.

is established [13, 78]. Other effects as faster memorization or long-term effects as one
may assume, are not [16, 78]. Nevertheless, the increasing interest in effects of AR on
learning in recent years will certainly continue and bring more insight on the currently
sparse researched medium-term and long-term relations concerning 3D visualizations and
their effect on learning [76, 16]. The interaction of ARnatomy is designed to be intuitive
and immersive, the user can tap on an anatomy to show its external label or swipe to
translate the anatomy automatically into the cache list. Tapping as selection or event
start and swiping as special action are the standard interactions known by most mobile
device users, therefore ARnatomy has them as input methods.

In general, external labels are positioned on empty screen space and are linked via a
line with the concerned objects [25]. In general, internal labels are placed directly in a
readable manner on the objects they are labeling depending on the object’s surface and
geometry. External labels are invoked by tapping on an anatomy and are implemented as
the Mühlner and Preim method [25], which drastically reduces label position adaptions
due to the mobile environment and front camera usage. Mobile environments have limited
computation resources and screen sizes, the screen space is occupied with circa 50 % of
the user’s head leaving little to no space on the bottom, left or right. The head of the
user takes a lot of space on the phone leaving room for labels only above the head.

The natural mobile device orientation during front camera usage with hands is vertical,
as the width of the small mobile devices, e.g. mobile phones, today are designed for
grabbing a mobile device by one hand. Most users tend to capture themselves from a
skewed carinal angle, meaning from the front of the abdomen to the head, so only the
space above the top of the head remains as external label visualization area. Therefore,
the mobile device width and most user’s mobile device holding habits during application
usage and design, impose a vertical orientation. When the mobile device has vertical
orientation, the user’s body is on the bottom edge of the mobile device and only space
left for labels is the area is above the user’s head. Even in the landscape orientation
mode meaning holding the mobile device horizontally, the device distance to the user is
limited by the length of the user’s arms. The length of the user’s arms is too small to
create enough room above the user’ head for label positioning.
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Figure 3.11: Coloured anatomy model labels in the FA.

In an external label, only the anatomy name is shown due to limited space inside a label
caused by the small area above the user’s head depicted in Figure 3.11. If a user wants to
see more textual information about an anatomy being synonym, description or hierarchy,
a long click, double click on the label or the anatomy activates the HA. The HA is treated
in Section 3.5.2 and displays the synonym, description, and hierarchy of an anatomy.
The external label foreground colour is based on the luminescence of background colour.
If the background colour gets to bright, the foreground colour is set to black to ensure a
readable label text. The number of labels determines the colour of the labels, their lines,
and the corresponding anatomy will have. Hue Saturation Value (HSV) is an alternative
representation of the Red Green Blue (RGB) colour model. The determination of the
label background colour is based on the Hue Saturation Value (HSV) colour space. The
label count is multiplied with an odd coefficient modulo the 360 degrees of the HSV
cylinder resulting in the hue value used for a label with fixed saturation and value as
depicted in Figure 3.12.

For an additional illustrative highlighting, all unlabeled anatomies are rendered transpar-
ently. Internal labels [25] are not utilized, since they would cause clutter in the image
and due to time constraints. The on the fly projection of text on an arbitrarily formed
geometrical object consumes additional mobile resources, time for implementation, and
may be labour-intensive due to the limited texture capabilities of ARCore and Sceneform.
The cache list contains anatomy removed from the face. The cache list is located above
the user’s head and allows the user to scroll through the removed anatomy through
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Figure 3.12: The HSV colour cylinder.

swiping to the left or to the right. Adding to or removing anatomy from the cache list is
invoked by swiping over an anatomy to represent the capability of digital dissection from
the user’s own anatomy on his own face as depicted in Figure 3.13.

Figure 3.13: The cache list above the head from the FA with the left frontal gyrus, right
frontal gyrus, and frontal bone added.

The idea originated in the circumstance that the human motor system influences the
human cognition during a real cadaver dissection [74]. A cadaver dissection requires
careful slicing the cadaver with dissection tools whose cutting motion is intended to
be represented by the swiping gestures on the mobile device screen. Small motoric
involvement of a swipe may not contribute to the anatomy learning process, but active,
visual, immersive exploration of the own anatomy has a positive effect on learning
[26, 75, 27]. The cache list contains anatomy removed from the face, cached anatomy,
and give the user the ability to position the cached anatomy automatically back into the
face by a downward swipe on the cached anatomy. The downward swipe is equal to the
direction of the original anatomy position and to the mental picture of adding anatomy
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back, downward, into the face as depicted in Figure 3.14.

Figure 3.14: Annotated arrows on anatomy in the cache list to illustrate the possible
swipe directions. A downward swipe would locate the anatomy back into the face. A left
swipe or right swipe would scroll through all anatomies in the cache list to the left or
right.

The mental picture of left or right swiping the cache list originates in the downward swipe,
left or right swiping iterates the cache list. Some of the cached anatomy objects may be
rendered out of the screen. The cache list item rendering beyond the screen is necessary,
since displaying the overall, growing cache list would create an information overflow on
the screen. The information overflow on the screen would draw too much attention away
from the face, which ought to have the focus of the user for learning. Tapping in a cache
list displays the label directly in front of the anatomy, since not enough space is available
to position the label somewhere else.

The capability of moving anatomy from its position across the screen inspired various
authors [147, 148] to create a 3D puzzle metaphor and puzzle games. In the puzzle
games, anatomy is chaotic, explosion alike, or comes in part by part and the user has
to reassemble the anatomy. Depending on the game, the overall compound anatomy
can be investigated before its disassembling. The playful component of disassambling
or reassambling anatomy helps the user to gain spatial knowledge and spatial abilities
[148]. The first intention for this master thesis concerning puzzle games was to include a
small 3D puzzle anatomy game, wherein one anatomy model appears above the user’s
head to indicate its availability for positioning. Then, the user would have to move the
anatomy close to its correct position, where the anatomy would snap into its correct and
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final position. Positioning other anatomy parts would continue until all anatomy parts
are correctly positioned. The primary argument against the puzzle implementation on
applications for mobile telephones is the finger coverage of screen space. On a handheld
device, the user’s face and the user’s body are always on the bottom screen edge as
well as the finger dragging anatomy models to their destination. The finger which will
perform the drag will also mostly obfuscate the bottom screen edge where the anatomical
drag destination will be. The user would have to move always his finger during a drag
below the actual drag destination, which results with the beforehand obfuscation in poor
interaction and UE. The secondary argument against the puzzle implementation is that
during dragging, the user may occlude the device camera with his hand or any finger
eliminating the HPE and the anatomy synchronization. The overall session and puzzle
game state would have to be preserved and recoverable, as the game gets interrupted.
Recreating the puzzle game state is highly time intensive to implement with ARCore.
A restart of HPE needs a high computational demand and depending on the device
processing resources, the time needed would be noticeable latency, which would tamper
the interaction and decrease the UE already negatively influenced from the primary
argument even more.

Derived from the primary and secondary argument, 3D AR anatomy puzzle games should
only be implemented on mobile devices having bigger screens than standard mobile
telephones to compensate the finger screen obfuscation. As ARnatomy is intended for
the general public and to support as much mobile devices as possible, an own imple-
mentation of the 3D anatomy puzzle in AR remains undone. The FA has an different
rendering technique in comparison to the hierarchy and singe activity. An obfuscation
of all anatomy models behind the 3D face mesh from ARCore inside the user’s head
results from the not changeable highest rendering priority of the 3D face mesh. As
countermeasure to the not not changeable priority of the 3D face mesh, a high level
illustrative rendering technique [85, 86], transparency, controlled by z axis translation
through the pinch gesture is implemented.

The user can translate the overall head anatomy via a pinch gesture on the z axis in
and out of the head. Single z axis threshold values set a focus area and context area
on the z axis. Anatomy in front of the 3D face mesh is the focus area. Anatomy far in
front of the 3D face mesh beyond the focus area is in the context area. In the focus area,
the interaction with anatomy works as previously explained. In the context area, the
anatomy is rendered transparently and does not react to taps. Contextual anatomy can
be removed with via swiping and context anatomy translates taps as raycasts rostral
until one or no focus anatomy is hit. Anatomy behind the 3D face mesh is not rendered
as it would be obfuscated by other rendered anatomy, as depicted in Figure 3.15, and by
the ARCore face mesh itself.

Further decrement of the transparency depicted in Figure 3.15 is restricted by low level
details discussed in Chapter 4. In the following, the mere intention of transparency usage
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Figure 3.15: Visualization of transparent context revealing anatomy located deeper inside
the head.

is treated. The user can translate the overall anatomy on the z axis via pinch gestures.
The primary intention of the z axis translation was the countermeasure for the 3D face
mesh obfuscation. The secondary intention of the z axis translation is to give the user
the ability to explore deeper anatomy inside the head. The tertiary intention of the z
axis translation is to highlight the anatomy in the focus area through rendering all the
anatomy beyond the focus area, being in the context area, as transparent. Interaction on
focused anatomy behaves as mentioned before, context anatomy translates taps rostral
via raycasts until one or no focus anatomy is hit. Swipes on context anatomy adds
context anatomy to the cache list, since in some cases a contextual anatomy can obfuscate
focused anatomy. With the filtering options treated in Section 3.4 and depicted in Figure
3.16 as AR rendering, anatomy can be filtered with direct feedback on any selection of
the options.

To keep the immersion high, the cognitive load low, and to avoid additional head move-
ments for the user, the two filter panels of anatomy region and type are rendered on the
sides of the head close to the anatomy they are filtering. If the whole body is supported
in the future, the filter panels ought to be scaled to the size of the currently visible body
and rendered in empty space, similar to external labels, and without the connection line.

The text search expands when clicked on the search FAB button. The user can enter
anatomy terms to search the DB, similar names will be suggested above the text search
field. A tap on a search suggestions activates the HA, which shows detailed information
about the anatomy. The expansion of the FAB text search disables, hides, and replaces
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Figure 3.16: All checked FA filtering options rendered in AR beside the detected face.

the menu FAB, treated in Section 3.4, with the inline close button of the text search field.
A tap on the close button collapses the search text field back into the search FAB and
the menu FAB becomes therefore visible again. All results found by the text search are
displayed as alphabetically ordered anatomy name grid where the rows have synchronized
row heights and widths for an unified appearance. To indicate that a model is contained
in the DB for a search result, an eye icon is added inside a grid cell as depicted in Figure
3.17.

The text search is only available in the FA, because the HA and SA function as informal
extension of FA without any face synchronization. The second FAB in the FA, the menu
FAB, is overloaded, meaning depending on the application state, the menu invoked by
a tap on the menu FAB contains different items. The actions of the menu FAB are
application restart, change between FA and SA, and settings. If a face is currently
tracked, a fourth action appears in the menu FAB to disable or enable the aforementioned
AR face filtering options depicted in the previous Figure 3.16.

The reason for the minimal UI with only the search FAB and menu FAB is not to overload
the screen and the users cognition. If the user restrains the permission for the mobile
camera, a black screen only with the text search will be shown without any AR. To
access previously found anatomy faster, a table in the DB is created programmatically
for saving the anatomy indices on the recents table. If the text search field is empty,
the names of the anatomies in the recents table are shown for fast access. A tap on a
recent anatomy results in the same as a tap on a search result, the HA is started and
shows detailed information about the taped anatomy.
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Figure 3.17: Left: Textual search for the first characters of frontal bone with its results
displayed as grid. Right: The frontal bone with its activated external label synchronized
with the face.

3.5.2 Hierarchy Activity

In the HA, the user can view 2D anatomical AR models with all their information and
explore the anatomical hierarchy. The HA workflow depicted in Figure 3.7 is a standard
Android 2D activity displaying the full information about the anatomies in the DB
and allows the user to explore the anatomy model hierarchy without AR. Interaction is
designed to be intuitive, the user can tap on an anatomy name to show all its information
below the name. The menu for each single anatomy located on the right enables the user
to view the anatomy in the SA, load the anatomy’s parent or anatomy’s children. If the
anatomy has a model in the DB, an eye icon is displayed on the left side of the menu to
indicate visualization capabilities of the current FMA entry. The icons of the anatomy
menu in the HA are selected to represent their actions as depicted in Figure 3.18.

If the action of a popup menu entry depicted in Figure 3.18 cannot be performed on a tap,
e.g. no more hierarchy available, the entry is removed of the popup menu and an Android
Toast message is displayed. If a model for the current anatomy object is in the DB, the
model is rendered in an 2D SceneView indented as preview. The SceneView reacts
on pinch gestures for zooming gestures, twisting gestures for rotation as well as swiping
for camera translations to view the model from any desired perspective. The difference
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Figure 3.18: The popup menu from a single anatomy entry in the HA. The eye starts the
AR anatomy model rendering in the SA. The smiley starts the FA with the corresponding
anatomy highlighted by its external label. The up or down arrows try to load further
anatomy hierarchy. The share icon starts the Android Sharesheet [149] to select a target
app as content receiver.

of the 2D SceneView in the HA to the whole SA is that the SA is only startable via the
popup menu from the HA. In the SA, the user can freely walk around the 3D anatomy
rendered as AR with the mobile device and with far more degrees of freedom as well
as immersion than in the 2D SceneView in the HA. Going one level upward in the
hierarchy is equivalent with loading all the information of the parent and the parent’s
children available in the DB. The loading of all children from a parent is required to
display the overall correct anatomy hierarchy. Going one level downward in the hierarchy
is equivalent with loading all the information of all children available in the DB.

Adding APs may bring more crosslinkage to other anatomy objects and data as depicted
in Figure 3.19. The popup menu depicted in Figure 3.19 allows the user to go to the
face or single activities with one click preserving the created mental picture, which is
beneficial for learning [13, 15]. Each model has its own popup menu to have fast direct
menu interaction. The crosslinked data coming from additional APs should be included in
the HA and displayed as a preview with a possibility to go to the activity the crosslinked
data belongs to. Fusing anatomy data in the HA should give the user multiple APs on
the same anatomy, amend the mental picture but not create a new one [33], a better
overview for learning, and the user’s next action.

3.5.3 Single Activity

In the SA, the user can view single 3D anatomical AR models with all their information
isolated and rendered on a detected plane. The SA workflow depicted in Figure 3.7 uses
the back camera of the mobile device to detect horizontal or vertical planes. On the
horizontal or vertical planes, single selected anatomy models are rendered in AR depicted
in Figure 3.5 to allow the user a single anatomy 3D exploration. If no plane is detected
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Figure 3.19: The full FMA hierarchy of the left and right cornea displayed in the HA
with the popup menu of the right cornea opened.

in the first milliseconds, the standard ARCore PlaneDiscoveryController picture
depicted in Figure 3.20 is shown to invite the user to circle his mobile device for a more
efficient plane detection than holding the mobile device motionless. The interaction

Figure 3.20: The hand motion picture of ARCore to indicate mobile device movement
for better plane detection.

in the SA is consistent with the interaction in FA. The difference from the SA to the
FA is the action on tapping an anatomy, which shows an external label with its name,
synonyms and definitions rendered as 2D view in AR. The 2D, AR view rendering for all
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anatomy information is adviced in the SA, since no other space claiming, distracting or
interaction capturing elements or anatomies are on screen. Swiping or dragging a finger
on the screen repositions the anatomy on its plane with the intention that the user can
adapt to environment changes or move the anatomy model. Anatomy movement in the
SA is intended to recover from an impeded visualization, e.g. a low contrast between
the rendered anatomy and the background. Pinch gestures scale the model to make
details visible as the human anatomy encompasses big and small enities. With the AR
rendering, the user can walk freely around and even loose the model as PR if, and only
if, the surface identified as a plane is still tracked by ARCore. Adding an APs in the SA
may only be done via an entry in the previously treated menu FAB. The menu entry
should switch to the dedicated activity required for the added AP and show the already
loaded anatomy in a manner, which depends on the AP. Extending the currently external
label of SA consisting of name, synonyms, and descriptions may overexert the user. The
added AP activity should allow the user to go back to the SA with one tap as accidental
activity changes should be correctable. On first explorations, a user can feel lost when
exploring the single activities one by one.

3.5.4 User Interface Colours and Icons

The link colour in ARnatomy is green and was chosen because of its association with
openness, peace, calmness and success [150] all features of mother nature, the creation
force wherein all life on earth originates. Green has a positive influence on humans
considering experience and performance during task execution. Green fits therefore
well as interaction colour in an application for anatomy exploration and education. In
medical institutions green is often used for its calming attributes and as green is the
contrary colour of red, i.e. blood, which enhances the visibility of the colour red. The
fact that vessels and muscles are rendered in red gives an additional reason to use green
as indication colour. Green and red are never used together in ARnatomy. On a progress
bar indicating a status, all colours including green have only an insignificant effect on
progress perception [151]. To have an appearance fitting with the link colour green,
the progress bar showing the extraction status on first application startup is turquoise.
Turquoise was chosen because amounts of green are inside its blue. All colours used in
the UI are depicted in Table 3.2, wherein the link colour was initially selected and all
other colours emerged naturally during the implementation by abiding the guidelines of
Google Material Design [37].

The rendered anatomy is in similar colours as in the Anatomography of BP3D [4] depicted
in the previous Table 3.1. Some default Scalable Vector Graphics (SVG) icons of
Android are suboptimal and during their optimization the idea of making an own icon for
ARnatomy emerged. The icons drawing path’s determining the foreground contain more
vertices than their not reducible complexity imposes. All suboptimal icons in ARnatomy
are redrawn by hand with minimal path vertices and without any representation change or
for using them as Animated Vector Drawables [152]. Animated vector drawables required
from all involved SVGs to have the same number of values in their paths to transforme
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Name Colour HTML-Code Purpose
Primary • 1FBFA9 Information
Primary Dark • 187468 Dialog Text Color
Link • 74D246 Indicate Interaction
Text Primary • FFFFFF Standard Text Color
Negative Text • 000000 Compensate Bright Background
Scene View • BDBDBD 2D Scene View Background

Table 3.2: UI colours of the mobile application with their assigned purposes.

them from one SVG into another SVG as realtime animation. The advantage along
pixel-free scaling of .svg animation is that status changes in systems can be visualized
and incorporated in icons. The icon change communicates to the user that an action
has now changed to another action and helps the user to understand the application
status more easily than without the icon change. The application icon depicted in Figure
3.21 has a not reducible complexity of paths in its .svg file and was inspired by the
suggested AR default icon in the talk from Unpingco and Faaborg [153] on Google’s I/O
’18 conference.

Figure 3.21: Designed application icon.

The human in Figure 3.21 is intended to represent the human anatomy within the borders
of AR.
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CHAPTER 4
Implementation

The Section order in this Chapter is similar to Chapter 3. Section 4.1 treats the identified
and applied technologies through the search for solutions for fulfilling the set development
choices, design choices, and witnessed problems during the implementation. Section 4.2
treats the conflation of the identified Body Parts 3D (BP3D) [4] flat file collection and
the Foundational Model of Anatomy (FMA) [5] Database (DB) fitting the macroscopic
and regional Anatomy Perspectives (APs) due to their inherent properties. Section 4.3
treats the development process of the Head Pose Estimation (HPE) used in ARnatomy.
Section 4.4 treats the development and design choices on source code development for
refactoring, maintenance, and extension.

4.1 Applied Technologies

The mobile application ARnatomy is designed for Android 8.1 Oreo Application Program-
ming Interface (API) 27.1.1, ARCore 1.7.0, Structured Query Language Lite (SQLite)
3.19, build with Android Studio 3.5.2 with Java 1.8, Android Software Development Kit
(SDK) tools 28.0.3, Gradle 5.4.1, and Android Studio Gradle Plugin Version 3.5.2 on an
Ubuntu 19.04 operating system for a Nokia 7 Plus mobile phone. The generated SQLite
DB is a conflation of BP3D 4.0 and FMA 5.0.0. As the programming language Java is
used to build an application on the operating system Android developed by Google, an
effort was made to implement the source code in adherence with the Google Java Style
Guide [35], Google Developer Policies [36], and Google Material Design [37]. The usage
of all technologies mentioned before with details of their implementation is treated in all
subsequent sections.
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4.2 Selection of Databases

The macroscopic and regional APs had no direct influence on the implementation. Only
an indirect influence, because the two APs determined the need for the BP3D flat file
collection and the FMA DB with their preprocessing to create an ARnatomy SQLite DB.
As SQLite was identified to have the best performance on Android, BP3D and FMA with
their unidirectional relation from the former to the latter had do preprocessed to receive
at the end a conflation of the two DBs.

4.2.1 Body Parts 3D

Most of the BP3D .obj flat files are already linked to FMA datasets by their source
code comments and exceptions without any linkage to FMA exist. Some anatomical
structures in FMA may contain only one logical part in BP3D as name or model. For
example, the internal carotid artery exists on BP3D version 4.0, and the external carotid
artery is missing partially. Some but not all sub parts of the external carotid artery are
included in BP3D and in the FMA DB, all anatomical entries of the external carotid
artery exist. Another example is the skin, its model from BP3D is for the whole body
without any parts nor different skin layers. Only, if the full body is supported, the skin
model can be used as rigid model. Since anatomy below the head moves differently than
the head, the single skin model for the whole human body is excluded in the rendering to
avoid unrealistic visualizations. Two symmetric half’s of the an anatomy structure can
be contained as one single model, an example is the external ear depicted in Figure 4.1.

Figure 4.1: The external ear model from BP3D flat file collection version 4.0 [4].

The ears of a user are asymmetric or, if a user has a wider head than the ear distance
in the model, the asymmetric ears would not be reflected in the application, decreasing
immersion and increasing model discrepancy and accuracy discrepancy. The same
applies to other anatomy models, e.g. the mandible position may be correct and its
proportions may not align with the detected face proportions. Some Identifications (IDs)
are uncontentious through the single BP3D versions, as an example see the 3949 Right
internal carotid artery and 4062 Left internal carotid artery in BP3D version 4 and BP3D
version 4.3. All filterable models from a version of the BP3D should to be verified before
model usage with their online anatomy model view Anatomography. For example in
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BP3D version 4.3, all left head veins are missing in the BP3D flat file collection. The
lack of corresponding, symmetrical models can effect various BP3D versions and models,
e.g. in version 4.0 the 83966 Tentorium cerebelli, 62004 medulla oblongata, and the
74877 mammillary body are missing their symmetrical counterparts. All aforementioned
irregularities had to be considered during the implementation phase, as they cause special
cases in loading models and rendering models.

4.2.2 Foundational Model of Anatomy

For the investigation of the FMA, its newest version was downloaded as Comma Separated
Values (CSV) file. The CSV file was converted into a SQLite DB with a converter from
Github [154], written in the programming language Python. Newer versions of the
downloaded FMA CSV file fail [155] the utilized conversion program [154] on Github used
for conversion to an SQLite DB. The format of the newer FMA CSV file contains syntax
errors [156], which need special error handling as quotes and commas in the CSV file were
misplaced. To overcome the conversion issue, an own bash script for the conversion from
the FMA CSV file to a SQLite DB was written. The written bash script was published
on Github [157] to help other developers experiencing the same problem.

An extension of the FMA can easily be executed by adding a foreign key column to
the FMA or using its Primary Key (PK) in another DB as foreign key. Single datasets
in the original CSV FMA file are solely textual and contain a vast number of blank
entries, which are sequentially filled over time with version updates. During preprocessing,
an optimization to reduce empty datasets was conducted, only the name, synonyms,
definitions, and hierarchies of FMA are used. Hierarchies can be traversted from the top
to the bottom, known as top down, or from the bottom to the top, known as bottom up.
A hierarchy table with the full bottom up paths of a single anatomy entry to its root
anatomy is created. Additionally, the created hierarchy table allows the Back-End (BE)
to load the anatomy hierarchy faster than without the bottom up hierarchy. The FMA
contains similar irregularities as the BP3D, not all FMA datasets, which are linked to
BP3D models in the generated ARnatomy DB, contain synonyms or definitions. With
the knowledge gained from the normalization from BP3D and FMA, their conflation to
one ARnatomy DB could be executed.

4.2.3 Conflation to Own Database

The BP3D models had to be linked with their name, synonyms, and definitions from
FMA to be able to query all anatomical information about an anatomical identity. All
models from BP3D are provided as 3.493 .obj flat files, which are highly inefficient
for fast search and especially in the context of mobile Augmented Reality (AR) model
rendering. No management system nor a DB querying language can be applied in the
mobile environment to have fast flat file access for high numbers. Fortunately, the
standardized comments at the beginning of an .obj BP3D flat file followed by the object
vertices make a line by line readout trivial. One has to first parse all flat files from BP3D
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and insert them into a newly generated DB to query single datasets and to apply further
automatised preprocessing. The standard scale in ARCore is in meters, the BP3D scale is
in milimeters. An implemented multithreaded bash program generates downscaled copies
of all .obj files. The preprocessed downscaling prevents the downscaling during runtime
on the mobile device, i.e. the demand for downscaling on the mobile device is removed
and saves mobile device resources. The downscaled files are then converted into .sfb
files required by ARCore via an own multithreaded script. Writing a script was necessary,
as the Google Sceneform [23] team refused a feature request for their converter to scale
multiple .obj files with one converter invocation [158]. In computer programming,
boilerplate code or boilerplate refers to sections of code that have to be included in many
places with little or no alteration. It is often used when referring to languages that are
considered verbose, i.e. the programmer must write a lot of code to execute small tasks.
Sceneform [23] is an extension of ARCore, which makes programming faster and easier
by preventing to write boilerplate code for simple AR rendering. An Java application
realized for this master thesis, named Files 2 SQLite (F2S) [159] and controlled via
command line arguments, is freely available on Github and generates a SQLite DB of all
files in one directory.

F2S is used to generate a DB from all scaled and converted .sfb files and allows the
programmer via command line arguments to extract data from the single file contents.
F2S optimizes the BP3D flat file names so they can serve as integer indices by avoiding
their prefix FJ and replacing their suffix M with 001. Another SQLite DB is generated
with the FMA indices from the comments of the .obj flat files. The DB containing
the .sfb and the DB containing the corresponding FMA indices are joined to have a
single DB containing only the name, the .sfb model, and the FMA indices of the BP3D
flat file collection. Finally with the contained FMA indices, the synonyms, descriptions,
and the hierarchy from the original FMA are joined to create the ARnatomy DB used
in the developed mobile application. Minimization of the ARnatomy SQLite DB had
the advantage of facilitating the data retrieval and decreased the ARnatomy DB size to
80.4 Mega Byte (MB) packed as XZ [160] archive. Unpacked, the ARnatomy DB has a
size of 290.5 MB on the mobile device. The raw BP3D .obj files have a size of 489.6
MB and the raw FMA file 15.8 MB in total 505.4 MB. The overall file size reduction
through the optimized conflation of BP3D and FMA is 42.52 %. Faster downloading,
installing, querying, less complexity, and less resource demand are the benefits of creating
the optimized ARnatomy SQLite DB. Without minimization, the BP3D and FMA would
have in summary 231 columns defined, which are listed in Appendix A.1. Most of
the FMA columns are blank and would not have been needed for ARnatomy. In the
ARnatomy DB, only 12 columns are required to fully contain all model information and
text information of BP3D and FMA. The ARnatomy DB gets decompressed once at the
first application start.
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4.2.4 Extensions

The majority of queries executed by the application are select queries. The query per-
formance may be increased due to more data added into the DB, e.g. when additional
APs are added to ARnatomy. The usage of SQLite brings optional extensions, the most
important one for ARnatomy is the Full Text Search (FTS) 5 [161]. FTS engines search
efficiently large texts or documents for one or multiple search terms, which can have a
high impact on the text search from the Face Activity (FA). The short synonyms and
description entries coming from the FMA, the already fast subtext search with wildcards
in SQLite, and the lack of time in the current implementation leave FTS 5 unused.

Another technology with up to six times more performance concerning create operations
is SQLiteKey Value (KV) [162]. Log Structured Merge (LSM) trees are search trees who
have a high performance on indexed big insert volume scenarios. KV pairs are maintained
in two or more separate structures optimized for KV’s underlying storage medium and
data is synchronized between the two or more separate structures in batches. SQLiteKV
adopts a Log Structured Merge (LSM) KV DB engine and maintains an SQLite interface,
also on mobile devices. A performance gain on small read operations below 128 bytes is
also given. If more APs would be added, SQLiteKV could be a good choice to track the
user actions via logging on a high frequency for more fine-gained debugging, perspective
analysis, or trajectory analysis, which require all create operations on a high rate.

4.3 Selection of Head Pose Estimation

First, the utilization of Bertók’s and Fazeka’s [103] work for HPE was tried to be
integrated into ARnatomy, but this failed due to timing. Second, an own implementation
of HPE with the tools and libraries Bertók and Fazeka [103] were using was conducted.
Third, a new version of ARCore was released, which contained HPE making the previous
two attempts to integrate HPE in ARnatomy obsolete. In the following three subsections,
the brief course of the three aforementioned events is treated in detail. The purpose of
the following three subsections is to report the development approach leading to the
results and to inform thereby future developers working with ARnatomy what can be
done and what should be avoided.

4.3.1 Integrating Dlib

The time schedule of the master thesis, the lack of documentation and interoperability
from Bertók and Fazeka [103] with ARnatomy caused a detailed source code investigation
of the work from Bertók and Fazeka [103]. The usage of the open computer vision library
named OpenCV [91] and the machine learning library named dlib [92] was recognized in
the C++ source code of Bertók and Fazeka [103]. OpenCV and dlib combined offer tools
for HPE in C++, especially dlib utilizes the work of Kazemi and Sullivan [131] for fast
face alignment. An own implementation of mobile face tracking was conducted. The own
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implementation transmitts image data via Java Native Interface (JNI) from Java over
the set up Native Development Kit (NDK) to the C++ API, which feeds dlib [92]. The
detected facial coordinates from dlib are then returned to Java from the C++ for the
final anatomy model synchronization with the user’s face. The implementation consumed
a considerable amount of time and promised to be manufacturable and independent
from unfinished third-party dependencies. The programming approach to detect facial
landmarks with dlib was step by step. First, a functioning face detection example was
compiled and fed with the video stream of the webcam from the development laptop
to get familiar with the dlib source code. Second, source code changes were applied to
change the face detection on on a laptop webcam to a C++ API for an Android mobile
application. The C++ API is required for communication between Java and C++ via
JNI, all within ARnatomy. Compared to the time spent on attempts to integrate the
work of Bertók and Fazeka [103], a robust face detection with the HELEN face dataset
[163] on the laptop webcam was achieved very fast. The HELEN face dataset consists of
2330 images with 194 face landmark annotations on each image. One example image
with its visualized landmarks is depicted in Figure 4.2.

Figure 4.2: Example picture from the HELEN face dataset [163] with 194 face landmarks.

The creation of the C++ API for the mobile device was time consuming, as tasks, which
are simple on the high level laptop webcam, were complex through programming language
peculiarities and programming language differences on the low level mobile device. As
promising the documentation of OpenCV [91] with dlib [92] reads, as cumbersome is its
implementation of HPE on mobile devices. The NDK documentation needed for commu-
nication between Java and C++ lacks small, concrete statements, and small examples to
begin with. In the NDK documentation, mere abstract, high level instructions without
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low level instructions, low level explanations, and simple low level examples are written.
For example, cmake executed by Android Studio via NDK was unable to find the installed
library libX11. The required paths had to be set by hand, although cmake provides an
own logic to find libraries and to link libraries. cmake fails to find libX11 on Ubuntu 19.04
and fails to report its inability in the first place [164]. Further problems and workarounds
emerged during the implementation of the C++ face detection for ARnatomy. A de-
veloper requires more time to track down the error sources without any error reporting
than with errror reporting. In software engineering, a fail-fast programming principle
[165] checks the system status frequently and reports immediately any indication for a
failure. Own failure reporting cmake scripts applying the fail-fast programming princi-
ple resolved the malfunction by validating each involved step of finding and linking libX11.

An example of the poor NDK documentation of Android increasing the development
time and development complexity of HPE. To log messages into the Android Stu-
dio console from the C++ side, the method __android_log_print should be used
and not __android_log_write, since the latter has no effect at all. And for
__android_log_write, the inclusion of the android/log.h file has no effect.
Only the linkage of find_library(ANDROID_LIB android) in the cmake file lets
only __android_log_write write data to Android Studio. The information about
__android_log_write can only be found on question, error, issue, and help pages
and not on the official documentation from NDK. Without the information about
__android_log_write, one just wonders why no log output arrives and searches
first for other error causes. Only exhaustive online search gives an answer or a brute
force workaround being no logging at all, which makes debugging rather cumbersome.
Additionally, no reference to the required JNI C++ method name mapping in the NDK
documents was given. With a small mobile application example a developer could inves-
tigate and learn from a working source code required for sending log messages from C++
with JNI and NDK to Java or the Android Studio.

After fixing the aforementioned errors, the first bitmap data from Java received the first
detected landmarks from C++. The C++ API uses dlib’s shape predictor trained with
the HELEN face dataset [163]. The full transmission process from Java to C++ and
back is treated in the remaining paragraph. The application obtains asynchronously
in Java the smallest colour image retrievable from the mobile device camera with a
resolution of 640 x 350 picture elements (pixels), if the face detection thread is ready.
According to dlib, small images are sufficient for face detection, so the image is downscaled
by a factor of two to a bitmap. Only coloured images can be retrieved by ARCore,
simultaneously to the downscaling, a colourspace transformation to greyscale for a lower
computational demand in face detection is performed too. Bitmap transmission from
Java to C++ via JNI is executed. The bitmap is inserted into dlib [92] to receive the
face landmark data. A landmark data format conversion to a Java Three Dimensional
(3D) array for retransmission from C++ to Java is executed. An objectification from
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a 3D array into a Java class for correct positioning in ARCore is performed to have
the anatomical positions ready for arc node positioning. Only now the face detection
thread is ready and asks ARCore to obtain the next image from the mobile device camera.

Three Frames Per Second (FPS) of the mobile face detection running on a Nokia 7
Plus were a poor result, which delivered only tampered interaction and weak synchro-
nization with the user’s face. Further or other optimization possibilities along with
the ones already applied were not known and not found in the dlib documentation,
on issue pages, and on the Internet. As last resort, a reduction of the used 194 facial
landmarks in the HELEN face dataset to 15 should lower the computational demand.
The HELEN shape predictor file was 187,4 MB big, which contributed to the startup
time and high resource demand on the mobile device. After processing and generating
the required .xml file for dlib [92] shape predictor training, containing the needed
HELEN face landmarks a 233development stop was the case. The reason was that the
shape predictor training consumed a high amount of Random Access Memory (RAM)
resulting in no evident processing progress over several days on the development laptop.
During the search in the Github issues of dlib to eliminate errors occurring during the
aforementioned landmark reduction, an answer from the creator of dlib to a developer
experiencing similar problems gave further insights. At least 16 Gigabyte (GB) RAM
are needed for shape predictor training, otherwise no shape predictor training should be
conducted, which is a highly important information excluded in the documentation of dlib.

The high demand of RAM for shape predictor training strongly decreased the training
progress on a 4 GB RAM laptop. In another found Github issue of dlib, a dlib shape
predictor file with only five facial landmarks was mentioned. After some search, the
unreferenced repository from the creator of dlib was found, which was not mentioned in
the dlib source file commentaries nor the dlib documentation before version 19.0. One
week of work and the task of retraining dlib with the 2330 pictures of HELEN with
15 facial landmarks became obsolete. The already trained five facial landmark shape
predictor file with 7485 pictures and with a size of only 5.7 MB, can be used for face
detection with far less computational demand. The five facial landmarks have the same
landmark accuracy as the landmarks from the HELEN dataset. The five facial landmark
shape predictor achieves accurate, robust facial landmark detection and identifies the
corners of the eyes and the bottom of the nose.

The usage of only five facial landmarks as shape predictor increased the FPS of ARnatomy
to 23, which was still insufficient for smooth interaction without latency, but sufficient
for developing and debugging. The need for tracked facial landmarks in ARnatomy
arose at the end of September 2018, when the aforementioned decision to implement the
C++ API for HPE was made. At the end of September 2018, the published ARCore
version was 1.5.0 with no face detection at all. After several months of implementing
and improving the C++ API for HPE, ARCore published on 15.02.2019 the version
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1.7.0 [23] with integrated realtime face tracking. After short tests, the implemented C++
API became obsolete and the accurate HPE from ARCore was used for anatomy model
synchronization.

4.3.2 ARCore

The use of ARCore AugmentedFaces to render synchronized facial anatomy solely in
the FA brought several advantages being the removal of additional NDK, Application Bi-
nary Interface (ABI) , cmake configuration, third-party dependencies, various translation
and conversion malfunctions. As the project build changed with the usage of ARCore,
the Android Studio errors and abrupt terminations were gone as well as a decrement
of application compile time, application start time, and latency was experienced. AR-
Core caused also a reduction of application file size by 150 MB, the overall source code
amount, and the source code complexity. With ARCore, wider face tracking angles are
supported, ARnatomy has better orientation capabilities for the user, and an overall
higher robustness to tracking loss. The aforementioned improvements through using
ARCore as HPE software increased in total detection accuracy, usability, User Experience
(UE), and immersion.

The use of ARCore AugmentedFaces brought additional advantages as the usage of z
axes values, realtime computation, complexity reduction, a well documented API, and
wider face detection angles. If a small region beside, below, or above the eyes is visible
on the screen, a face can already be recognized by ARCore [22] as depicted in Figure 4.3.

In Figure 4.3, screenshots after the immediate facial recognition of ARCore [22] starting
the initial z axes translation of anatomy models out of the user’s face. The rendered
anatomy in Figure 4.3 obscures the face intentionally to illustrate the extreme angles
and the detection of partly visible faces. In Figure 4.3, the top right image indicates
that ARCore [22] relies heavily on eye location as the face detection was only successful,
if the eyes where visible in the camera stream. Normal single AR model rendering
with the mobile device’s back camera is supported and the back camera usage has no
ARCore HPE support. Repercussion is that the ARCore session configuration has to
be changed accordingly with impacts on future design decisions. If body pose estima-
tion [133, 134, 135, 136, 137, 138, 139, 140] may be supported, a dedicated body pose
estimation algorithm and HPE algorithm is required. The front camera usage comprises
proximity to the user’s own body and therefore limits the capture of only upper body
parts, e.g. the user’s own head or throat, and not the whole body due to the arm
extension range of the user. The arm extension range limitation of users makes the
implementation of native full body pose estimation in the near future from the ARCore
development team highly doubtful. Nevertheless, the application case of capturing other
individuals with the back camera exists in the future and should be considered in future
improvements of ARnatomy.
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Figure 4.3: Top Left: Left and right lateral partial face occlusion requires one half of
an eye for detection. Top Right: Top lateral partial face occlusion requires both eyes
to be visible for detection. Bottom Left: Top partial face occlusion through head tilts
requires both eyes to be visible for detection. Bottom Right: Bottom lateral partial face
occlusion requires both eyes to be visible for detection.

Some source code of ARCore [22] is proprietary, so it can only be assumed what technol-
ogy or algorithm ARCore is using for plane detection and head detection. Based on the
high performance and environmental learning capabilities of ARCore, an adapted version
of monocular Oriented Features from Accelerated Segment Test (FAST) and Rotated
Binary Robust Independent Elementary Features (BRIEF) Simultaneous Localization
and Mapping (ORB-SLAM) 2 [64] with qualified feature point selection may be used.
As treated in Section 2.1.2, monocular ORB-SLAM 2 [64] is the state of the art in
constructing a map with tracking the camera’s position in an unknown environment in
terms of accuracy. The map data is provided and updated via the ARCore API, so a
developer can use the generated map of horizontal or vertical planes to build a program
and to render an AR scene with AR models.

The plane detection with the back camera and HPE with the front camera exclude each
other as other algorithms have to be used for practicable outcome, detection accuracy,
and detection speed. With the front camera, the HPE of ARCore allows a developer to
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use three predefined locations to position models or define a texture for the synchronized
3D face mesh. The usage of face mesh positions may be unwanted by the ARCore team.
The reason for the latter assumption is that the documentation concerning the 3D face
mesh had no explanations, references nor a picture of the 468 vertices from the face mesh
in its first publication [23]. A description of the retrieval from single face mesh vertex
coordinates was additionally missing. The coordinates could be retrieved by using the
correct, uncommented ARCore methods. As guidance and help for the own development
and for other developers, a Github repository augmentedFaceMeshIndices [132] was
created to visualize the ARCore [22] 3D face mesh from different perspectives with its
vertex numbers. One generated example picture [132] from a ARCore .fbx template file
is depicted in Figures 4.4.

Figure 4.4: Right eye mesh indices of an ARCore .fbx file [132].

An own Two Dimensional (2D) texture can be mapped onto the mesh data from the
ARCore class AugmentedFace delivered every frame by the ARCore facial detection.
The AugmentedFace mesh data covers the face correctly, gets updated each frame,
considers eye lid openings, mouth deformations, and facial expressions. Only assumptions
can be made about the algorithm used for HPE. The HPE algorithm may be an adaption
of the Cloud Face API [166], which is capable to detect all information about faces in an
image needed for HPE.

4.4 Development and Design Choices

The general development and design choices for the application are treated in Section
3.4. In this section, specific software development and design choices for coding emerged
during the implementation, which refine the general development and design choices.
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4.4.1 Software Design Patterns

The simple software design pattern integration is easier [42] than more complex software
design patterns [43, 44], because of the predefined code structure by Android projects
and the own API of ARCore. The complex software design patterns are more specific
and not designed for ARCore, which would result in unnecessary, bloated Boilerplate
code making the source code structure brittle with loose ends. Simple software design
patterns have a wider area of application, can be customized for special requirements,
and still, they result in a clear code structure. Structured code with smaller classes than
big classes furnishes maintenance, refactoring, advancement, and interchangeability of
the BE. Understanding and adapting the relation of simple software design patterns to
build a more complex one as the asynchronous DB API was time intense due to frequent
source code refactoring. The anatomy is the key object in the ARnatomy source code
and utilizes the wrapper pattern [42]. The source code object of anatomy, depicted as
Unified Modeling Language (UML) class diagramm in Figure 4.5, links DB data in the
BE, its internal application status, and its visualization in the Front-End (FE) , where
the methods of each field are excluded for focus and simplicity.

Figure 4.5: UML class diagram without methods of the Anatomy class and its relations.

In Figure 4.5, the anatomy object filled with data during runtime from the three DB
tables is filled only by the required DB table entries depending on the current application
status. The wrapping [42] node class ARNode, and its two subclasses LemmaNode and
FaceNode of the anatomy object, contain render information, e.g. face filtering status,
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hierarchy, already loaded or rendered. The LemmaNode is used by the Hierarchy Activity
(HA) to present the anatomy hierarchy and the FaceNode is used by the FA to render
the facial AR anatomy models positioned by HPE executed from ARCore. If more APs
are added, the ARNode or FaceNode are the super classes to extend and their Anatomy
fields should only to be lazy loaded. The lazy loading is highly important for any kind of
hierarchy views, which should only load few levels or load the levels one by one for a low
DB transaction volume.
Loading one hierarchy level from the DB can require the loading of 20 or more children,
which can contain a various number of models. In the following, an example as illustration
of the necessity of constraining the anatomy hierarchy loading to one level at a DB query.
A DB entry is depicted by its ID and its name, e.g. 58238 left cornea. All anatomy
ancestors of the anatomy leaf entry 58238 left cornea starting from the left with its
topmost parent are listed and each FMA entry with a * has arbitrary other of descendants:

67135 anatomical structure*, 82472 cardinal organ part*,
14065 organ component*, 82485 organ component layer*,
58101 layer of wall of eyeball, 58102 fibrous layer of
eyeball, 58238 cornea, 58240 left cornea.

The above illustrated 58238 left cornea hierarchy is also depicted in Figure 3.19 with
an opened popup menu. Loading the overall 58238 left cornea hierarchy at once would
cause an enormous heavy query and a very long, unnecessary loading time. Any query
from the DB loads only one anatomy hierarchy level.

4.4.2 Source Code Documentation and Principles

The documentation consists of javadoc comments on every package, class, and method
as well as single line comments inside the source code in important or critical sections.
The intention of the documentation is to briefly explain why and sometimes how the
method or code was written for later, future developers reading the code including the
author of this master thesis. The readability, understanding, error search, maintainability,
purpose, specifically of complex code, is facilitated through source code documentation
[167]. All the previously stated attributes of documentation require less effort and time to
improve and extend ARnatomy. Quality rises with documentation as less time and effort
in the future has to be spent to work with the source code [168]. Documentations about
relations and crosslinkage throughout the whole application drew a more precise mental
picture in the head of the coding developer and fostered effectiveness and efficiency with
clarification. A developer has to read few documentation sentences before he inspects the
often uncommented code, knows fast what to expect from a source code. The expectation
gives the developer the chance to write more nuanced and more sophisticated source code
than without documentation [168]. Misunderstandings are decreased though a first Point
of Reference (PR) for understanding, which the documentation gives, and the mental
picture about code is less abstract and more precise. The number of multiple code frag-
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ments performing the same actions is decreased with the susceptibility to errors and the
search for similar code is enhanced. Each source code package, class, field, and method of
ARnatomy has a javadoc for documentation. Despite the importance of documentation,
companies, teams, or developers to not write a brief description or expectation about the
behaviour and result of their source code. As an example, the retrieval of ARCore’s single
face mesh positions was overlooked on the first read, due to no source code documentation.

The API documentation of ARCore is only available online, see ARCore Issue 733 [169],
and not in the Integrated Development Environment (IDE) of the source code where it is
required the most [167]. Several coding principles were applied during the development.
The Keep It Simple, Stupid (KISS) principle for focusing and trying to incorporate
simplicity in the development design, to enhance the performance of the single, simple
code parts, and to avoid code complexity, was applied to the ARnatomy source code.
The Don’t Repeat Yourself (DRY) principle [167] aims to avoid redundancy and foster
code reuse for an uniqueness of actions in source code fragments and was applied to the
ARnatomy source code. The fail-fast principle [165] was merely used for debugging and
testing. An application using the fail-fast principle reports errors as fast as possible and
performs status checks during its runtime to detect malfunctions quickly. The infamous
ninety-ninety principle was applied unintentionally too, where “The 90 % of the code
account for the first 90 % of the development time. The remaining 10 % of the code
account for the other 90 % of the development time” [170]. The ninety-ninety principle
from Tom Cargill [170] humorously emphasizes that the time effort put into source code
development is often non-linear and requires often almost double the time, “double 90
%”. In ARnatomy, the majority of the facial AR rendering code required nearly the same
time as all other code.

4.5 ARnatomy Rendering

The development and design choices in Section 3.4 were amended or redefined by the
act of development. The BE and FE are both separated in three single activities, which
are equal to single Android activities. All aforementioned three ARnatomy activities,
FA, HA, and Single Activity (SA) in Chapter 3, constitute and categorize the appli-
cation in its rendering, understanding, and source code. The preference of the word
activity before the words mode or status originates in its close relation to the structure
of the Android source code. In Android, the definition of activity is “An activity is a
single, focused thing that the user can do” [171]. The three activity names are inspired
by the word describing their purpose, relation to ARnatomy, and the source code the most.

Within the source code of the three activities, software design patterns contributed to the
implementation, the interoperability, and reproducibility of ARnatomy. Only applying
the Factory pattern [42] to the Android SQLite DB API was insufficient to query anatomy
fast and easily. Hooking is a technique used to alter or augment the behaviour of other
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software components by intercepting function calls, messages, or events passed between
software components. Code executing the described behaviour is simply called a hook
[42]. The builder pattern [42] along with the wrapper pattern applied to the DB API
facilitated the creation of customizable, asynchronous queries to the DB API with no
FE latencies and no data or model changes through hooking methods [42]. The optional
hooking methods are called when a query is finished. Each single invocation of a build
method from the build factory creates a new object queried from the DB API.

The incorporated builder pattern and wrapper pattern inside the factory pattern provide
a query customization and query abstraction, which allows the developer to query all
table columns fast and with few code lines. With the abstraction, frequent query cus-
tomizations can be grouped into a single query method according to the DRY principle.
To be statically available with one instance and one global point of access, the singleton
pattern [42] is applied too on the DB API. An adaption for ARnatomy is that the
singelton is thread save to prevent concurrent DB malfunctions and exceptions caused
by concurrency. Especially the hierarchy loading of multiple levels can cause multiple
datasets to be queried multiple times. The hierarchy loading is restricted to one level for
the most querying performance through SQLite. If somehow high latencies occur never-
theless, the FE remains unaltered as a consequence of the asynchronous fetching on the
BE and exclusively updating the visible components when the data is loaded from the DB.

4.5.1 Face Activity

The FA, treated methodologically and previously in Subsection 3.5.1, renders interactive
3D AR anatomy models, which are synchronized through HPE with the user’s face. The
high level effects of ARCore were treated in Section 4.3.2. This section treats the low level
effects and limitations of ARCore [22] and Sceneform [23] concerning the implementation
of the FA. The ARCore team and the Sceneform [23] team prioritise the development on
features as can be seen in the Appendix A.2. A disadvantage of ARCore is the need for
model conversion to .sfb for rendering. The following paragraphs are important further
development and the reproducibility, as they are influenced by properties and features of
ARCore and Sceneform. Direct .obj rendering is unsupported by ARCore. The explicit
reason why could not be found and remains unknown. The conversion to .sfb overwrites
the coordinates of all single BP3D .obj files. The ARCore converter normalizes all
coordinates based on the barycenter of the model, wherein the y coordinate is set to zero.
The zeroing of the y coordinate comes from the standard case in ARCore, to position
models on a plane. With command line arguments of the Sceneform [23] converter 1.8.0
or higher can be instructed to not recenter the model. The Sceneform converter 1.8.0
is malfunctioning on BP3D .obj files, which was reported as Sceneform Issue 613 web
page [142]. Sceneform Issue 613 [142] limits the Sceneform converter to Version 1.7.0,
which sets the y coordinate to zero without an option for disabling or enabling. As a
consequence, all rendered anatomy AR models had to be positioned manually during
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the whole development. The AR face root node determined by ARCore is located in
the middle of the nasal bridge and all rendered models are positioned manually and
relative to the face root node. The model accuracy is high, as the manually positioned
anatomy models are relative to single 3D face mesh cooridnates, which change with the
detected face. Eye movements and jaw movements of users are supported and move
the anatomy models too. Without Sceneform Issue 613 [142], the coordinates from the
BP3D could be used to position all models automatically and relative to the face root node.

The manual, single AR model positioning due to Sceneform Issue 613 [142] was laborious
and cumbersome. The correct anatomy model location had to be identified in the
Anatomography [4] followed by a sequential approximation of model scaling, model
rotation, and model positioning in that order for each model. Sometimes, during model
scaling, model rotation, and model positioning, already positioned models had to be
changed due to the anatomical context getting bigger and bigger, which made false model
positioning noticeable. The bones were positioned first as the skeleton gives fortitude
to the human body and serve as PR for other anatomy models. Eyes, brain, teeth, and
vessels where positioned manually in that order and relative to the already positioned
anatomy with guidance of the Anatomography [4]. Two major complications contributed
considerably to the required time. First, the y axis zeroing of the models lead to a
different position after a rotation around the model’s barycenter being zero on the y axis
but non-zero in the x and z axes as depicted in Figure 4.6. Second, some models needed
a rotation around the x axis, so their front faces towards the camera.

Each rotation or position change of a model required an activity or application restart of
five to twenty seconds depending on the amount of source code altered. If further APs
are added, the Sceneform Issue 613 [142] persists, and no coordinates of new models are
extracted by preprocessing, model scaling, model rotation, and model positioning have
to be executed manually. As a matter of time economy, all alternatives and any form
to automatically create predefined AR model positions should be carefully considered
before positioning models manually. Anatomy models positioned too close to the ARCore
face mesh detect no interaction because the face mesh consumes the intended interaction.
Although, the invisible face mesh is located directly on the user’s face and the anatomy
models are rendered in front of the face mesh. Only the texture, material, and vertices
from the utilized ARCore face mesh can be set or read. No other properties can be
changed nor set having repercussions on the rendering and on the interaction. First,
objects positioned behind the face mesh and not intersecting with the face mesh are not
rendered to save computation resources. Second, changing the face mesh texture and its
rendering priority causes unrealistic rendering results reported in Sceneform Issue 798
[172] and is therefore completely avoided.

Since the face mesh texture and its rendering priority must remain untouched by design
in Sceneform as previously treated, rendering AR models as illusion inside the head is
impossible with ARCore and Sceneform 1.7.0. Turning off the face mesh would remove
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Figure 4.6: Left: Barycenter of the zygomatic bone visualized as green dot positioned
in the middle. Right: Barycenter as green dot positioned at the bottom, with the y
coordinate set to zero. Different positioned barycenters result in different model positions
after a x axis rotation on the lower two images. Further rotations, e.g. on the z axis,
would increase the position difference.

all face mesh coordinate tracking. A trade-off had to be made to overcome the face
mesh constraints for rendering AR anatomy models with ARCore and Sceneform. The
trade-off is a pinch gesture, which translates the root face node on the z axis. With the
root face node, the residual anatomy translates too in or out of the head, which is similar
to before and behind the 3D face mesh. The pinch gesture has a resemblance to zooming
and depth translations in mobile device interaction [173]. Anatomy in front of the 3D
face mesh is the focus area. Anatomy far in front of the 3D face mesh beyond the focus
area is in the context area. In the focus area, the interaction with anatomy works as
previously explained. In the context area, the anatomy is rendered transparently and
does not react to taps. The overall anatomy can be translated completely in front of
the head or behind the face mesh and is always synchronized on the anatomy x and y
coordinates from the face mesh as depicted in Figure 4.7.

The control of the z axis is the control of the anatomy depth. So, the user can translate
anatomy out of his head, in front of the face mesh, and dissect virtually via swiping the
anatomy synchronized with the user’s face. In Figure 4.7 in the middle, the anatomy
is partially hidden directly behind the face mesh. All the 3D axes are always aligned
with the face mesh. The face mesh is the PR for the orientation of all anatomy models.
ARCore transparency has four limitations. First, the transparency rendering value going
from 0.0 to 1.0 has no effect when set below 0.1. For example 0.05 or 0.01 have the
same effect as 0.1. Second, the superimposition of front sides and back sides of single
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Figure 4.7: The z-axis translation controlled by pinch gestures viewed from a side angle
for better representation. Left: Illustration of the thresholds from the focus and context
areas. Middle: Back-translated anatomy in focus mode with obscuring face mesh on the
cheeks. Right: Front-translated anatomy with anatomy, eyes, teeth, and zygomatic bone,
in the context area and therefore transparent.

anatomy models summarizes the single transparency value of one anatomy object to 0.2.
Third, with several anatomy models in the line of sight the aforementioned transparency
summary is increased. For example two anatomy models sequential on the z axis have
already an overall transparency value of 0.4 for all following anatomy models as each
of the two anatomy models has a back side and front side. The result is less visibility
for models located deeper inside the head. Fourth, the material transparency setting
of ARCore suffers from poor design of Sceneform [23]. A single loading of materials is
unsupported in Sceneform and confirmed by Issue 580 [174]. An extra .obj file would
have to be loaded with special material transparent setting. But in combination with
Sceneform Issue 613 [142] limiting the Sceneform version upgrade and the preprocessing
of all models, an object loaded with special texture for all anatomy models is impossible.
ARCore transparency cannot be used with its full potential in ARnatomy. If in the future
higher ARCore versions than 1.7.0 are functional, the material setting has to include the
twoPassesTwoSides and doubleSided properties. Then, the customized material can be
used in the conversion of all BP3D .obj flat files to the ARnatomy DB.

External labels rearrange themselves with an adapted version of the technique of Mühlner
and Preim [25]. On label generation, all four corner coordinates of a label emit a raycast
to the camera. If no direct line of sight between the four label corners and the camera is
given, the new generated label repositions itself downwards or upwards. The repositioning
goes on until all raycasts of the four corners from the label hit the camera to guarantee
an unimpaired line of sight to the label. An offset from the user’s head ensures that all
labels are rendered above the head. The label line is centered in the model the label refers
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to and in the center of the label. The implemented four corner raycast test for labels
needs considerably less computational demand than storing all rendered label positions,
label properties, their anchor point computation, and distance transformations [25] as
proposed by Mühlner and Preim [25]. The four corner raycast test achieves sufficient
results as already depicted in Figure 3.11.

Internal labels [25] may be supported in the future and require a runtime generation
as bitmap. The bitmap is then set as a texture of a model in ARCore or all anatomy
names are precompiled textures loaded as Binary Large Objects (BLOBs) from the DB.
Other approaches for internal labeling with ARCore are unknown. Problems in ARCore
with internal labels arise, as the high variance of geometrical proportions in anatomical
models makes a standard texture generation complicated. Not the whole anatomy name
as internal label may be seen from the front. All the above properties with their mutual
effects have to be considered for readable internal labels, i.e. text distortion and 3D shape
fitting, anatomy orientation, and bumpy surface approximation via Bezier curves and
their scaling effects [25]. Internal labels require further the consideration of their contour
crossings with view-impairing anatomy shapes and overall perspective distortions [175] to
be readable. An advanced algorithm, as treated by Ropinski et al. [175], is needed and
must be implemented to function with the anatomy models loaded from the DB and AR-
Core. As external labels communicate the anatomy name in a sufficient way and require
less implementation time, the topic internals labels remains for Chapter 7, i.e. future work.

The colour error affecting the HA and SA as depicted in Figure 3.5 may be linked to
Sceneform Issue 613 [142]. Only the rendering of models in the FA with HPE has no colour
errors. Sceneform versions above 1.7.0 cannot compile the BP3D models and Sceneform
versions below 1.8.0 may set wrong material values not used in the FA. Howsoever, the
Sceneform Issue 613 [142] and Sceneform Issue 764 [176] restrict ARnatomy to use the
Sceneform model converter 1.7.0 and the Sceneform framework 1.7.0 or 1.8.0 but not
higher.

4.5.2 Hierarchy Activity

The HA, treated methodologically and previously in Subsection 3.5.2, presents the
anatomy hierarchy from FMA in textual form to the user through single hierarchy levels.
The textual search of the user in the FA delivers in search results invoking on a tap the
HA, which is equal to the previously treated long tap on an external label in the FA.
All textual, hierarchical entries of the FMA can be viewed in the HA and the linkage
to a BP3D model in the HA is optional. An empty HA, being no anatomy rendered,
is forbidden and for safety, an empty HA circles the user back to the activity the user
came from. In Android, a shared elements transition [177] is when User Interface (UI)
elements shared between two activities have an animation. The animation is intended to
illustrate a visual relation between the two UI elements. The HA and FA have shared
elements and utilize the shared elements transition [177]. The same UI element in the FA

99



4. Implementation

and HA is the anatomy name, which transits by smooth movement, scaling, and colour
adaption to indicate the relation and equality of an element from a previous activity in
the current, new activity. Coming from the FA, the initial anatomy has already its name
loaded, all other anatomy properties are loaded, if they exist in the DB. The anatomy
property loading ensures to show all information about an anatomy. Top down rendering
of one anatomy parent or all anatomy children found in the anatomy hierarchy tree is
executed by a recursive tree-traversing algorithm. The tree-traversing algorithm iterates
asynchronously through the anatomy hierarchy stored on the DB to load one anatomy
parent or all anatomy children.

4.5.3 Single Activity

The SA, treated methodologically and previously in Subsection 3.5.3, renders single
interactive 3D AR anatomy models on horizontal planes or vertical planes for an isolated
anatomy object view. ARCore uses metric data from the mobile device for support of its
internal system and features. An example feature is an environmental High Dynamic
Range (HDR) mode for light estimation since version 1.10.0 [144]. The environmental
HDR mode comprises of three APIs to detect and replicate real world lighting by using
the mobile device’s back camera. First, the directional light from the environment is
determined to cast shadows in the correct direction and on the rendered AR models for
higher immersion. Spherical harmonics are special functions defined on the surface of
a sphere for a realistic illumination. Second, ambient spherical harmonics for ambient
illumination from all directions is available for the rendered AR models. Third, a HDR
cubemap for specular highlights and reflections can be applied on the rendered AR
models. Through environmental HDR, AR renderings become more realistic than without
environmental HDR, as the illumination adapts to the real world, which increases the
immersion. Regrettably the Sceneform Issue 613 [142] prevents any version upgrade
above 1.8.0. Until the rectification of Sceneform Issue 613 [142], the disadvantages of
lacking further bug fixes and no usage of 60 FPS cameras persist as well as less mobile
devices are supported.

The plasticity of augmentations [51, 52] is the adaption of AR to its environment or the
AR rendering status. The utilization of the plasticity of augmentations is constrained,
e.g. Sceneform Issue 387 [178] disallows the application accessing the camera material
to set the background colours of an AR model. For example, on close proximity of the
camera to the AR rendering a blur or a black and white background could create low
illustrative rendering [85, 86] as depicted in Figure 4.8.

To overcome Sceneform Issue 387 [178] and to have at least a black and white background,
the direct usage of Open Graphics Library (OpenGL) shaders would be necessary. The
usage of OpenGL shaders is reserved for future work due to time limitations, as only little
documentation and information about the utilization of OpenGL shaders was found. A
simple adaption of augmented plasticity [51] was implemented in the SA to communicate
anatomy proximity via a red directional light shift. If a user comes close to an AR model
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Figure 4.8: A left camera turn from the right over the middle to the left image showing
the background colour change and blur due to AR model proximity [179].

rendered in the SA, the directional light turns smoothly to red to indicate closeness
to the anatomy or being virtually inside the anatomy. The light shift is turned off by
default, but remains in the application as small meaningless feature.
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CHAPTER 5
Results

Section 5.1 treats the development resuls, which is a mobile application with anatomical
Augmented Reality (AR) model rendering synchronized with Head Pose Estimation
(HPE). Section 5.2 treats the Informal Evaluation (IE) design and its result being
the assessment of the implementation divided into two case studies and a subsequent
interview to gain insights in usability and functionality. Section 5.3 treats the case study
designs specifically created for the IE and the IE results created by the iteration of eight
participants. Section 5.4 treats the summary of the single participant interview answers.
Section 5.5 treats the limitations of the developed mobile application ARnatomy.

5.1 Development

Anatomy AR models paired with anatomical information synchronized with tracked
user faces through HPE on a mobile device for the education of the general public was
inexistent before. A user can view his face anatomy and information about the anatomy
through synchronized, interactive, anatomical AR models rendered with ARCore on a
mobile device screen. Each source code package, class, field and method of the 50 Java
and 53 eXtensible Markup Language (XML) files has a source code documentation and
is formatted for readability, which is reflected in Table 5.1 showing the number of written
source code lines and documentation lines.

Language Source Code Documentation Blank Overall
Java 9134 1584 1652 12370
XML 1355 0 19 1374

Table 5.1: The line number of source code and documentation. Only javadoc comments
are counted as documentation, whereby many source code comments are written too.
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As the ARnatomy is written for Android, the Google guidelines and rules of Google Play
[38], Material Design [37], developer policies [36], and Java [35] are followed. Following
the aforementioned guidelines creates a high interoperability for Android devices and
maintainability. ARnatomy can be executed on every mobile device supported by ARCore
and should work on Google Play. Maybe the upload on Google Play as verification of
guideline adherence will be conducted when this master thesis is graduated. On the
mobile device, the application size is 380 Mega Byte (MB) unpacked and 118 MB packed.
Packed refers to when ARnatomy is downloaded as well as installed but not started. The
starting time of ARnatomy is two seconds and the anatomy loading time is three seconds.
The relatively long loading time originates in the need to have all facial anatomy in
memory for correct anatomy positioning as mutual anatomy dependencies exist. Only
the permission to use the camera is required for rendering in AR. If the permission is not
granted by the user, only the textual search with the Two Dimensional (2D) anatomy
model will work. ARCore requires minimally an eye of the user’s face to be visible in the
mobile device’s video stream for HPE in realtime as previously depicted in Figure 4.3.
Sunglasses hiding the eyes seam to have no effect on HPE. Caps or hats prevent HPE, if
they hide the eyes. Low illumination and high illumination extremes are supported as
depicted in Figure 5.1.

5.2 Informal Evaluation
An assessment of ARnatomy with eight participants was executed by the guidance of Lam
et al. [45], which surveyed 850 papers. From the identified 350 papers, seven scenarios
for evaluation were elaborated via open coding. The seven scenarios were split into
process and visualization classifications for an easier scenario selection. As the process in
ARnatomy is fixed due to the created Database (DB) containing anatomy for ARCore,
which has limitations previously treated in Section 4.5.1, the focus of the evaluation is
set to visualization. Within the visualization classification, the User Experience (UE)
scenario from Lam et al. [45] was chosen. The UE scenario applied in this master thesis
is that ARnatomy is evaluated by participants, who received the Nokia 7 Plus with
ARnatomy installed, to start discovery-based learning [27] of anatomy. The selected
evaluation method is IE, it lets the user interact naturally with the application and
the interaction observations as well as the answers from later asked questions, listed in
Appendix A.3, create an assessment. The assessment contains information of intuitiveness,
usability, functionality, knowledge transfer of ARnatomy, and design flaws. Two case
studies were designed for the IE and all eight participants finished the two case studies
and answered the asked questions afterwards.

The participants received only a clarification about the application context and about the
anonymity of the IE. The participants could play and discover the application without
any instructions or comments for about one minute. During the one minute, participants
already showed a high degree of familiarization as the participants were already exploring
anatomy. Afterwards the two designed case studies had to be executed and notes on
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Figure 5.1: Top Left: Sunglasses have no effect on HPE with anatomy translated
backwards for illustration. Top Middle: Low illumination right before HPE. Top Right:
Low illumination right after HPE. Bottom Left: Cap just not hiding the eyes. Bottom
Middle: High illumination right before HPE. Bottom Right: High illumination right after
HPE.

the User Performance (UP) were taken. During the case study execution, only brief
instructions where given what to do, but not how to do it. An exception with an
immediate notation was, if a participant could not perform a case study component
within 30 seconds. The intention of the brief instructions was to observe, if a participant
can orient oneself and explore ARnatomy along with the contained anatomy. The brief
instructions aim to create a more intense experience and a stronger familiarization with
ARnatomy than explaining what do to as well as to receive more qualitative data [180]
from the interview. Predefined questions utilized from and inspired by Lam et al. [45]
along with specific ones originating in the moment of case study execution were asked
and are listed in Appendix A.3. Specific questions about application details emerged
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during the IE were carried on to the next participants to address details, to optimize the
interview, and to increase the response quality [181]. All recordings of the participant’s
answers were transcribed as facilitation for analysis, structuring, and fast access to the
verbatim, open-ended answers [181]. The two case studies with the interview afterwards
were done sequentially by eight voluntary, anonymous participants on different days but
with the same ARnatomy version. Contextual participant data concerning the overall IE
is listed in Table 5.2.

# A G Profession M MR CSC CSM
1 23 f Graduate Psychiatric Nurse 150 Entertainment 04:13 03:15
2 30 m Production Manager 30 Social Media 04:51 03:04
3 30 m Warranty Case Handler 180 Entertainment 03:47 02:51
4 25 m Fitter for Machines 120 Info Search 05:37 03:28
5 30 f Psychology Student 120 Instant Messaging 04:46 03:37
6 26 f Office Administrator 180 Social Media 05:02 03:40
7 63 f Pensioner 2 Calling 08:22 07:26
8 56 f Home Helper 60 Work 07:48 06:07

Table 5.2: General information about the participants. A = Age, G = Gender, M =
Minutes a Day on a mobile device, MR = Main Reason of mobile device Usage, CSC =
Case Study Cerebellum Completion Time, CSM = Case Study Mandible Completion
Time.

The mean participant age is 35, the mean age of female participants is 39.5, and the
mean age of male participants is 28.3. The mean daily mobile device usage is 105:25
minutes, mean time for the case study cerebellum is 05:33 minutes, mean time for the
case study mandible is 04:11 minutes, and it was tried to recruit participants from various
professions to gain as verbatim results as possible.

5.3 Case Studies
The two case studies are designed for the IE [45], wherein the UE is assessed by the
resulting data. The resulting data is expected to give insights and feedback on the
user knowledge gain, usability, user satisfaction, knowledge transfer, possible design
flaws, or design weaknesses. The two case studies are designed to let the participants go
through all sections of ARnatomy. By going through the two cases studies, participants
familiarize themselves with all application capabilities and get a detailed impression on
learning anatomy with AR. As treated in Section 2.1.3, AR affects education positively
[26, 75, 27, 76] and the exploration as well as interaction with the anatomy models is
expected to construct anatomical knowledge. Similar as the task analysis in instructional
design [46], the two designed case studies are subdivided into components to determine
the actions needed for the completion. A case study component groups the actions a
participant has to perform to finish a case study for a better structure and overview
during evaluation. The single components of the two case studies are treated in the two

106



5.3. Case Studies

following Subsection 5.3.1 and Subsection 5.3.2. The similarity to instructional design is
that participants get single, brief instructions by the observer describing sequentially one
case study component to complete without any further help. The reason of withholding
help is to observe, if the participant can perform self-directed learning [46] and discovery-
based learning [27] with ARnatomy. The brief instructions contained only what to do
but not how to perform a case study component. The intention of only saying what
to do is to create a more detailed observation on the self orientation and self-directed
learning of a participant within ARnatomy as well as a more experience-driven feedback
about ARnatomy instead of explaining how to do a case study component. The brief
instructions should also foster the anatomy exploration solely by the participant along
with an intense effect on learning anatomy and the recall of the anatomy learning effect
and anatomy content in the interview afterwards. All participants completed the two
case studies in the same component order to observe the learning effects and to take the
different times depicted in the previous Table 5.2. In the following two subsections, the
single case study components are treated in detail.

5.3.1 Case Study A: Cerebellum

A fundamental understanding, knowledge, and feeling about the application and its
structure should be learned with the case study cerebellum. From the standard, first Face
Activity (FA) the participant should search for the cerebellum with the text search and
tap on a search result to go into the Hierarchy Activity (HA). In the HA, the synonyms,
description, and model are shown and hopefully read. Then, the parent and siblings of
the cerebellum should be viewed by going one level up in the anatomy hierarchy. A sibling
in the Foundational Model of Anatomy (FMA) hierarchy of the crebellum is the pons.
The pons should be started as Single Activity (SA) and enlarged. Then, the cerebellum
or the pons should be found, but now on the own face in the FA as the participant should
know now, how the cerebellum or the pons might look and where both are located inside
the head, namely the brain. The case study is completed, if the participant was able
to show the label of the cerebellum or the pons in the FA as depicted in Figure 5.2. In
comparison to non-AR applications, the experienced immersion, including the positive
affected learning, of the user when visiting internal anatomy structures is higher.

Participants needed approximately one minute longer than the mandible case study, since
the cerebellum case study was their first encounter with ARnatomy and AR as well as the
main case study shows the core functionality of ARnatomy. The following paragraphs
treat the single case study components, their purpose, and the participant’s interaction
performance.

Component Text Search: With the textual search of the cerebellum the participant
should gain knowledge of the text search capabilities of the application and, if the
cerebellum is unknown, that the cerebellum exists in the first place. The same green
colour for all User Interface (UI) elements used in this component, Floating Action Button
(FAB) search, text field, and search result grid items, should form a mental picture that
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Figure 5.2: Left: Labeled cerebellum from the side view for a better recognition. Right:
Labeled pons from the front.

green is an indicator for interaction. The anatomy models react always on interaction as
depicted in Figure 5.13.

Younger participants below 40 years of age recognized the textual search through the
FAB icon in the FA. Older participants above 40 years of age had to search for the
correct FAB via tapping. On a second try after knowing where the search is, all older
participants immediately knew the search FAB. Only the oldest participant required
more time to realize that the search results above the textual search are shown as a grid
and can be tapped. The delay in the realization was caused by a preference of swiping
over tapping. The oldest participant could not specify why swiping was preferred over
tapping.

Component Hierarchy Activity: The participants should remember the HA as
place giving extensive information about anatomy models. The name, the synonyms,
the descriptions, and the model of the cerebellum are all visible on screen at the same
time without any distractions keeping the cognition in one mental picture. In general,
perseverance in the same mental picture facilitates the linkage of all observed and learned
information, strengthens concentration as well as attention. The strengthening concentra-
tion and attention only applies with a lack of distractions, i.e. transitions or animations
of disappearing or appearing content [33]. As constructivism states [13, 15], “Active
learning constructs spontaneous knowledge”, which is hopefully given when translating
between the single activities. Not the full potential of constructivism can take affect due
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Figure 5.3: Text search with the automatic suggestions for the cerebellum.

to the 2D model rendering in the HA, its limited interaction, and no high immersive
embodied cognition.

The effect of constructivism and embodied cognition on learning is higher in later case
study components with AR renderings due to the higher immersion [26, 27, 75]. The
HA with the pons as sibling of the cerebellum is depicted in Figure 5.4. Similar to
the search icon, the menu icon in the FA was unknown by the two oldest participants.
The same applies to the menu icon in the HA, but not for the hierarchy up navigation
or down navigation as the arrow icons for up or down were known by the two oldest
participants. The hierarchy view expansion on each invocation, depicted in Figure 5.4,
fostered curiosity in the participants familiar with mobile devices. Questions showing
further interest emerged and explorations happened to see “What anatomy is up or
down?” One participant thought going up in the hierarchy displays the other search
results previously viewed as a grid in the FA. On immediate and further investigation, a
correct conclusion was made that the viewed content is the anatomical hierarchy.

Component Single Activity: The immersive rendering of the pons in the SA should
show the full immersion to the participants with all aforementioned benefits of immersion
on learning [26, 27, 75]. The participant starts the SA via a popup menu entry in the
HA named Single View as already depicted in Figure 3.18. As in the previous HA, with
a tap all information of an anatomy can be viewed as depicted in Figure 5.5. Via swiping
the anatomy can be translated or rotated. After some interaction, knowledge about the
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Figure 5.4: Left: Standard anatomy view of cerebellum. Middle: Hierarchy expansion of
one level. Right: Selection of pons.

appearance of the cerebellum or the pons should be gained and one of both should be
found therefore in the FA. With a sub menu entry of the menu FAB, the FA containing
the textual search should be restarted.

Figure 5.5: Pons AR rendering in the SA with its label activated.

Viewing single AR in the SA by coming from the HA was always understood, it took
some time to find the icon in the popup menu as the application and its UI was new to
the participants. After some seconds, each participant was able to go from the HA to
the SA. The hand motion picture of ARCore moving clockwise to indicate mobile device
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movement, already depicted in Figure 3.20, is rendered first in the SA, which confused
all participants for a moment. Five participants figured out what to do, some with fast
success under four seconds and some needing up to 13 seconds until ARCore detected a
plane and rendered the anatomy. The required time is mainly caused by ARCore itself,
as uniform surface textures with low entropy are poorly detected. As the five participants
started to capture wooden surfaces, “How do I get this to work?”, the plane detection
by ARCore worked significantly faster. The distance to the surface may have additional
influence on the ARCore plane detection, most participants succeeded when not capturing
a wooden table but a wooden floor. The better detection of ARCore with a wooden
floor is a disadvantage, since a wooden floor is not always available. The search for a
better detection distracted the participants from learning the longer a search was required.

All participants knew from the initial familiarization of one minute that a tap on the
single rendered anatomy shows its label. A positive surprise effect was experienced by
all participants in the SA, since swiping relocated the anatomy instead of removing it
as in the FA. One participant relocated the anatomy from the wooden floor to dark
tiles, “for a better contrast” between the foreground colour and background colour. The
shader colour error already treated and depicted in Figure 3.5 was perceived by some
participants, but the error has been considered as minor. The overall appearance of
anatomy was always observable by the participants. An often stated comment by the
participants was “interesting colors”, which encouraged more movement with the mobile
device around the AR rendered model. Another participant stated amused during pinch
gesture interaction for zooming “The zooming is fun, can I zoom into the cells too?” On
the instruction “Go back to the FA” two strategies where chosen, tapping the Android
back button until the activity is reached or pressing the dedicated menu button of the
menu FAB as depicted in Figure 5.6.

Figure 5.6: Left: The menu FAB invoked in the FA with the options about, restart, and
filter. Right: Same FAB menu as left but invoked in the SA with the options settings,
restart, and face. The settings allow the user to turn labels or plasticity on or off and go
to about, showing brief application information.

The back tapping with the Android back button occurred only if the menu button was
not investigated beforehand. However, the association of the face icon with the FA was
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not strong enough. Half of the participants who tapped the face icon stated they have
tapped the face icon because they were in the process of exploration or the first position
of the icon in the popup menu and not because of an association of the face icon with
the FA. The other half of the participants associated the face icon with the FA.

Component Anatomy Search: With tapping to see the external labels [25] showing
the anatomy names and swiping to add or remove anatomy to the cache list previously
treated in Subsection 3.4.2, anatomy can now be explored superimposed on and synchro-
nized with the participant’s own face as AR. The highest effect of constructivism and
embodied cognition on learning is adhered through the most immersive UE [33, 75] the
application is capable of. The direct interaction with AR models superimposed on the
participant’s own body lets the participant learn more about his anatomy [13, 15, 29] when
searching for the cerebellum or pons. The exploration and search should be enhanced by
a high illustrative rendering [85, 86] technique, namely transparency. Transparency alters
the objects appearance allowing the viewer to see more content as less superimposition
are observed. When an external label is rendered, all other unlabeled anatomy becomes
a transparent context as depicted in Figure 5.7.

Figure 5.7: Highlighted anatomy during search for cerebellum or pons with its label
shown. All other anatomy is transparent.

Back in the FA, the interaction to find now the cerebellum or pons was hesitant. More
confidence came with more interaction on anatomy, sometimes the intented tapping
had no or wrong outcomes, but all participants managed to recover and execute their
intentions. Half of the participants remained on the outer anatomical regions and needed
a hint, “Can you go deeper?”, to further try interaction and to discover the pinch gesture
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for z axis translation. No labels of bones were viewed, but after going deeper into the head
anatomy during their self-directed exploration, participants tapped on anatomy to see the
anatomy’s labels. The oldest participant was unsure and needed the most time and some
encouragement that nothing can be broken or done wrong. After the encouragement of
the oldest participant, more confident and faster application exploration was observed.
Although the initial restraint on swiping of the oldest participant, the swipe gesture was
known and performed after some time “To enlarge the small anatomy”.

The screen size caused sometimes wrong swipe interaction results during the search for
anatomy. When performing the pinch gesture on top of multiple anatomy models to
translate the z axis, the gesture may be detected by multiple anatomies as a single swipe.
A locking mechanism is implemented, when more than one interaction happens at the
same time, no other actions can be invoked. However, the problem is the pinch gesture
start, one finger may touch the screen sooner than the other, where the first finger invokes
the swipe action and the second finger locks then further actions. Camera location has
a big influence on interaction, some participants tend to stretch their middle finger,
annulary finger, and little finger when they are tapping, swiping or making gestures.
The camera occlusion through a stretched finger happened at least once for six of the
eight participants. Stretched fingers may occlude the camera automatically deleting the
ARCore scene graph by deleting the root face node and all its descendants. An instant
face detection is performed afterwards and the anatomy is rendered again from the start
with the loss of the application status. Therefore, the distraction from learning is rather
low, as a new anatomy exploration can be started in one second.

Component Completion: The cerebellum and pons are chosen to not have an im-
mediate exploration result and to create a small challenge for the participants. The
participants hopefully discover and learn a lot of anatomy due to the challenge of finding
internal anatomy. Any kind of anatomy filtering is intentionally excluded in the cerebellum
case study to make the experience of anatomy exploration more intense without than
with anatomy filtering. Any swipe across any anatomy moves the anatomy into the cache
list where the participant can scroll through the added anatomy. Cached anatomy can be
put back into the face via swipe over a model. The external labels [25] invoked through
a tap identify unambiguously an anatomy object. A label invocation of the cerebellum or
pons is equal to the completion of the cerebellum case study. All participants discovered a
lot of anatomy during the exploration and the interaction with models along with visible
interest but not a single participant discovered the cerebellum and only one participant
discovered the pons through model interaction. The positive effect of the cerebellum and
pons, which were difficult to find, was that a lot of other anatomy was explored and found
“Ah that’s where this is”, which is also reflected in the interview answers. After about one
to two minutes of anatomy exploration, the case study was considered to be completed
as the participants performed repeatedly, precise, and confident all interactions required
for discovering the cerebellum or pons as depicted in Figure 5.8.
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Figure 5.8: Anatomy is located above the user’s head during the exploration to find the
cerebellum or the pons. A label of the currently viewed anatomy is shown additionally.

A lot more time would have been required to discover the cerebellum or pons in most
cases. The location of cerebellum and pons was too far inside the head causing the
participants to get lost in the details of head anatomy.

5.3.2 Case Study B: Mandible

The participant’s knowledge gained in the former case study should be enriched and
amended in the sense of anatomy learning content in the mandible case study through
more application details. From the FA the participant should filter all head anatomy but
the mandible. To be sure it is the mandible, its label, depicted in Figure 5.9, must be
invoked to access through it the HA to observe all information about the mandible.

Then, the parent and siblings of the mandible should be viewed by going one level up in
the anatomy hierarchy to know there is an anatomy hierarchy in the first place. A sibling
in the FMA hierarchy of the cerbellum is the vomer. The vomer should be started as FA
through the popup menu entry View Face with the vomer label shown, which completes
the mandible case study. The intention is behind going from one activity on another one
through interacting with anatomy to shown the user the different accessible Anatomy
Perspective (AP). Participants need approximately one minute less time than for the
cerebellum case study, since the mandible case study was their second encounter with AR.
The interaction with ARnatomy and the UI of ARnatomy was known by the participants,
since some mandible case study components were already visited in the cerebellum case
study. The second case study shows the additional functionality of ARnatomy not visited
by the participants in the cerebellum case study. The following paragraphs treat in
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Figure 5.9: The external label of the mandible with unfiltered face anatomy for comparison
with filtered face anatomy in Figure 5.10.

detail the single case study components, their purpose, and the participant’s interaction
performance.

Component Anatomy Filter: From the standard, first FA the participant should
enable the face AR anatomy filter view and filter out everything but the mandible.
By unchecking all checkboxes except the anatomy region oral or mental and anatomy
type filter bones, the filtering is complete. The participant has observed the change
in anatomy rendering according to the set filter selection as depicted in Figure 5.10.
Now anatomy filtering should be learned by the participants to learn simultaneously the
different anatomical terms through filtering.

Six of the eight participants were able to find the filter function at the first try under
eight seconds without any hints, the oldest participant did not know the filter icon, did
not try to find the filter function through exploration, and required a hint to proceed.
The second oldest participant found the filter function through clicking all menu points.
Solely the English anatomical region terms in the filtering epicted in Figure 5.10 caused
problems of comprehension. Strictly the anatomical region terms but nothing more was
translated by the observer into German for a correct understanding of the participants.
The AR checkbox interaction worked only about 50 % of the time, double and tripple
tapping had to be done to uncheck all the single filter options. The poor checkbox
interaction of 50 % results, that the checkboxes react only when their text is clicked
and not the boxes themself. A technical solution to the checkbox problem could not be
implemented in AR as rendering checkboxes in AR results in the text-selection behaviour.
In general, the participants performed light and fast taps with later normal taps and
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Figure 5.10: Filtered anatomy except the oral region to only show the mandible and
maxilla. The filter panels for anatomy region and anatomy type are partially visible
beside the face. Eyes are occluded for the participant’s anonymity.

hard taps. A normal tap or a hard tap is easier recognized by ARCore and the gesture
detector. An observation focus on light tapping, normal tapping, and hard tapping was
set on the residual participants, which showed an adaption of their tapping interaction
with a slight annoyance during the first performed hard taps.

Component Label Access: Displaying the anatomy external label [25] of the mandible
via a tap is the next step to validate that the viewed anatomy object is the mandible. A
label in the FA shows only the name and not the anatomy synonyms or definitions due
to the narrow space. Via a long tap on the label the participant should go to the HA to
view all the anatomy data at once.

Seven of the eight participants knew how to display the label of the mandible immediately
when instructed, the oldest participant required about five seconds to perform the tapping.
Some tried a double tap, which has the same result as a single tap.

Component Vomer Search: By tapping the up entry of the popup menu in the HA,
the parent and all the siblings of the mandible are loaded. One sibling is the vomer,
another bone the participant has to find.

Half of the participants discovered or remembered the long tap function after some
seconds in the FA to view the labeled anatomy with all anatomical details in the HA. The
poor memorization or discovery rate of the long tap means that the interaction text shown
once during database extraction is insufficient to communicate all interaction methods.
A method more akin to the utilized major learning theory constructivism and embodied
cognition [13, 15] would be beneficial to memorize the possible interaction methods better
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Figure 5.11: Label of the filtered mandible. Eyes are occluded for the participant’s
anonymity.

and was proposed as improvement by three participants during the interview treated in
Section 5.4. Searching for the vomer was quickly done by three participants, all others
needed about five to ten seconds to tap on the popup menu up entry to see the vomer
hierarchy entry. The tapping on the up entry of the popup menu was faster than the
first one in case study cerebellum.

Component Completion: To complete the mental picture benefiting from construc-
tivism and embodied cognition [13, 15], the participants should now transit back to the
FA via the popup menu entry View Face of the vomer. With the click on the popup menu
entry View Face the case study is considered to be completed as all other three processes,
explained after this sentence, are automated. The first process goes from the HA to the
FA with its initial animation on the first recognized face. The second process applies the
correct filters in the application to make the selected anatomy from HA visible in the
FA. The third process renders the external label [25] and all other anatomy objects as
transparent to highlight the vomer in its context via high illustrative rendering [85, 86].

Some participants acted so quickly, the next instruction being “Show the vomer in the
face view” could not be spoken before other actions as loading new hierarchy or going
to the SA or even going to the FA were executed. By knowing the HA from the first
case study, more confidence and speed was clearly observable from all participants. One
participant did not want to put the mobile device away, since he wanted to find the
hypothalamus first, which he did with the words “Is it really that small?”. In general, the
participant’s observation depicted high interest in AR anatomy. The anatomy exploration
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Figure 5.12: The hierarchy view of the mandible, showing the target anatomy, the vomer.

and the anatomy interaction came naturally after a short familiarization time without
any instructions during the initial play time. Synchronization of the mandible and the
eyes, which moved during speaking, head tilts, or phone tilts enhanced the immersion
“Wow, the anatomy on the screen moves when I speak”. Some instructions had to be
repeated, since some participants had all their attention focused on ARnatomy, especially
in the FA. As soon as an activity or action was executed, six of the eight participants
remembered them and could easily execute them again. Only the two older participants
needed more repetitions, two to three, to achieve activity and action memorization.

Some insecurity among the participants was observable, they seam to think what can
happen, what to expect, or if they will do something wrong before an interaction. A
instructional tutorial about the interaction with ARnatomy may align their expectations to
the understanding of ARnatomy and lower insecurity and concerns to do something wrong.
The information provided from the FMA seamed to be too little for the participants.
Some participants appealed to be dissatisfied instead of neutral or satisfied to have
learned something about anatomy after reading the short FMA descriptions in the HA.
The observation focus on the participants satisfaction with anatomical text information
was caused by the phrase “Somewhat sparse information here” of one participant.
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Figure 5.13: The highlighted label of the vomer in the FA coming from the HA. As the
colour is orange, the highlighting is hard to detect right below the tip of the nose. Eyes
are occluded for the participant’s anonymity.

5.4 Interview

A focus was set on open questions, as it is possible to analyse the open-ended answers
with few participants. Open questions can have a higher response rate than closed
questions and can generate qualitative data by design as well as give additional insights
[180]. Professional blinkers is the blindness for mistakes or defects that occurs in the area
in which one works due to long-term affiliation. Open questions allow the interviewee to
bring up details, topics or issues hidden behind professional blinkers of the interviewer
[180]. The participants can speak their minds on answering open-ended questions and
say how they preserve as well as experience the application [181]. The interview answers
are recorded for unimpeded, free, easy, natural answering from the participant without
the cognitive load of writing and deceleration of writing compared to speaking.

Specific questions important for the application evaluation were close-ended followed by
an open-ended question, e.g. “Did you learn something about anatomy? What did you
[not] learn?” or “Can the interaction with the application be learned? Why?”. Evaluation
goal is to gain insight about the participant’s perception of ARnatomy, their opinion on
the usability, the applications capability of anatomical education, and qualitative data to
answer alongside other information the two research questions. General demographic
data about the participants is already included in the previous Table 5.2 for a brief
overview of all participants. The asked questions are listed in Appendix A.3. The answers
of the participants from the transcript are in the following paragraphs summarized
exemplary cited in English in the order the questions were asked. All participants were
unfamiliar with AR and particularly with synchronized, interactive, anatomical AR model
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renderings. Unfortunately, no participant familiar with AR or AR anatomy participated.
Only short-term learning effects without medium-term and long-term learning effects
were tested in the IE. Six of the eight participants were interested in learning anatomy.
The oldest participant who uses the mobile device only for calling people had no interest
in anatomy nor the application, since “It is much easier to search in the Internet and
no extra application is required”. The graduate psychiatric nurse stated that no new
knowledge can be gained for herself as she has more detailed anatomical education than
the application provides.

However, the nurse’s final opinion along with six other participants on the interaction
and the face-synchronized AR anatomy models was consistently positive. Important to
note is, it was the first experience for all participants with synchronized AR, which was
perceived as interesting, modern, memorable, and immersive. The first impression and
experience in minute one was unsure and insecure but curious, because the application
interaction and the application capabilities “Can I move the anatomy?” had to be discov-
ered. The last impression was amazement that ARnatomy exists paired with elaborations
for improvement summarized in later sentences to have the participant’s critics structured.

The ARnatomy application as a whole was interesting for six of eight participants. The
oldest participant stated that the developed application is not interesting at all, but added
“in all fairness” that most other mobile applications are too not interesting at all as “They
are too complicated and need too much time for understanding”. Another participant
explained that she would not install an application to get information, considering that
anatomical information is easily retrievable from the Internet in her mother language,
especially due to the medical terms. When the language barrier within the developed
application would be inexistent, her first argument would apply with the addition that
searching medical Internet sites seam more reliable than the one in ARnatomy and seam
to contain verified and official medical information. On the question why information on
the Internet is considered to be verified the answer was that medical information sites
contain information from medical and professional lexica, which are verified and peer-
reviewed by professionals. ARnatomy was not able to gain the trust of the participants.
The assurance of medical correctness is missing inside the application.

Six participants can imagine ARnatomy in schools as learning tool for learning anatomy
with less abstract pictures and more concrete imagination and understanding about
anatomy in the pupils minds. Laymen interested in anatomy or having any anatomical
issues may have benefits from using ARnatomy too, since the layman can look, which
anatomy is propably hurting. By accident, such a laymen was a male participant, but to
his pity, his hurting neck muscles were unsupported. All participants could imagine the
application used as visual aid in a medical consultation operated by the a member of the
medical staff. One participant imagined the application for students in their first lessons
on universities and used the phrase “digital hologram” for AR. Maybe in the future, real
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holograms are utilized for education in every class room. The oldest participant stated,
if someone else, a doctor for example, would control the AR application to show her
affected anatomy, it would be good for spatial understanding and the anatomical context,
which can be expressed on a poster too but not as comprehensible as in ARnatomy. One
key requirement for the oldest participant was inevitable, a bigger screen due to “Seeing
so much stuff in such a small space hurts in the eyes”. The participants expressed an
understanding, lightness, simplicity, and intuitiveness of the interaction with ARnatomy.
The participants stated that common interaction methods are used, since there are “Not
that much interaction possibilities” in the first place, and the interaction is consistent
through the whole application. After an interaction method discovery, e.g. the swiping
gesture, one knows how to redo the interaction for a desired reaction or invocation of
an action. Through the minimal, non-complex UI the an interaction could easily be
remembered and learned, especially the transition between activities. The discovery
of some interaction methods was not as clear and intuitive to the participants as the
discovered interaction itself.

The graduate psychiatric nurse and the home helper stated elderly people are unable
to learn all the interactions, which was confirmed by the performance of the oldest
participant. All interaction methods were known by the oldest participant, but her
unconcern inhibited the interaction execution. The nurse with year-long experience in
geriatric medicine explained the unconcern of most elderly people as follows; “With the
age, locomotory and cognitive restrictions adjust in various ways strongly influenced by
the lived lives and the environment elderly people have lived in and live today. When
people today in their twenies are going to be elderly, their interaction abilities in general
will differ a lot than today’s elderly people, not only technical but social too”. Small
children can also not use the application for the same reason as for elderly people the
nurse stated.

Three participants communicated, with more exploration and familiarization under maxi-
mum 15 minutes, the whole application including the transition between activities or
rather their relation and logic can be learned. In the SA, the models are rendered on
detected planes so user’s can walk around and inspect the anatomy. Walking around
an AR rendering with the mobile device was considered as an interesting, new, and
innovative interaction method by all participants, which is considered to be beneficial
for the future of AR and ARnatomy. Textual information about interaction methods is
insufficient to communicate all interaction methods at once. Six of the eight participants
portrayed some kind of an initial tutorial teaching once step by step all single interaction
methods with texts and explaining the single icons used in ARnatomy. Critic on the
interaction by four participants was that some taps were not detected, but they recovered
by tapping again harder. Swiping may hit accident wrong anatomy, which is annoying and
was experienced multiple times by six participants. One participant expressed the desire
to turn the whole anatomy in the face so the anatomical back of the head is rendered in
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front of the face with a twist gesture. Currently, the anatomy can be viewed from the
front and from the side in the FA, adding a view from the back would be highly beneficial
for a better understanding. In the HA and the SA, the anatomy can be viewed from
all sides. The oldest participant would have needed “More structure in the application”.
Despite the previously mentioned interaction errors, all participants considered the usage
of the common interactions as tapping, swiping, and gestures positively and with the
words of one participant, interaction “Needs some small polishing and it would be perfect”.

All participants except the graduate psychiatric nurse learned something new about
anatomy. The gained anatomical knowledge of all different participants ranges from
the location of the pons, vomer, sphenoid, nasal bone, and cerebal artery to general
impressions, e.g. the optical nerves end in the middle of the brain and that “Wow, the
brain is far more complex than I thought”. All participants had the opinion that they will
learn more about anatomy by conducting more exploration and that the learning applies
for individuals of the general public too. The participants remembered what they have
learned after approximately 10 minutes during the interview by explaining what they
have learned. The anatomies remembered by the participants are depicted in Table 5.3.

# A G Profession N Learned Anatomy
1 23 f Graduate Psychiatric Nurse 0 -
2 30 m Production Manager 3 Optical Nerves, Pons, Hypothalamus
3 30 m Warranty Case Handler 3 Sphenoid, Vomer, Nasal Nerve
4 25 m Fitter for Machines 2 Frontal Gyrus, Maxialla
5 30 f Psychology Student 2 Nasal Bone, Zygomatic Bone
6 26 f Office Administrator 1 Cerebal Artery
7 63 f Pensioner 1 Frontal Bone
8 56 f Home Helper 3 Frontal Bone, Vomer, Cerebral Artery

Table 5.3: Juxtaposition of the participants and their learned anatomy. A = Age, G =
Gender, N = Number of learned anatomy.

The table 5.3 shows the anatomy memorization during the two case studies with a
mean time of 05:33 minutes for the case study cerebellum and a mean time of 04:11
minutes for the case study mandible. The overall mean time is 09:44 minutes and only
through interaction, the mean number of remembered anatomy by the participants is 1.87.
The participants were only instructed to search for anatomy, but not to learn anatomy.
Excluding the graduate psychiatric nurse, who had already detailed knowledge of human
head anatomy and learned nothing new, the mean number of learned anatomy by the
participants is 2.14. The mean number of remembered anatomy by female participants is
1.75 and the mean number of remembered anatomy by male participants is 2.6. Anatomy
entities cannot be expressed as a real numbers with values behind the comma, so the
overall mean number of remembered anatomies at 2.14 is therefore rounded down to have
the definite result of two anatomies learned within the mean time of 09:44 minutes. Eight
of the 15 remembered anatomy entities are bones, which are 53.33 %. Four from eight
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participants would reuse the application to locate anatomy they previously have heard
of. One participant stated he is unsure and would need more time with the application
to receive more anatomical information first. Despite four participants would not use
ARnatomy for themselves, all participants would recommend the application to another
person interested in anatomy to try it. Reasons or the refusal of ARnatomy are that
the anatomical knowledge is already high, no interest in anatomy at all, no trust in
the contained anatomy information, or no interest in mobile applications in general.
The appearance of the rendered anatomy is sufficient for five of the eight participants.
Three participants would welcome more realism in the rendering, illumination adaptation,
maybe photos as texture, more realistic shading, model surfaces, “Nuances and more
granulation as real bones”.

An outline on each anatomy model or a colourization of all anatomy models, including
an off and on switch as visual guidance for differentiation between the single anatomy
identities, would be welcomed by five participants. The proposal of coloured anatomy
models, anatomy regions or anatomy types [141] for differentiation is aligned to the
findings from Garsa et al. [146]. Students who learned with coloured models instead of
non-coloured models performed 10 % better in later tests [146]. The colourization could
be paired with the single face filtering options too, as now especially the bones and brain
gyruses appear often as one entity, as two participants expressed. The current anatomy
rendering was fine for the three other participants, who had the impression “That this is
how the anatomy really looks and one can easily differentiate it from another”. One partic-
ipant had the idea to colourize or outline the anatomy only if the camera is relatively close.

Three participants would welcome further anatomy to be tracked and superimposed. The
whole body while capturing oneself in the mirror or others, arms, and hands as well as
the teeth with information about correct brushing for kids and grownups were stated as
beneficial. Two participants had an interesting idea apart from each other. The currently
supported filtering options from the FA could be a menu to render not only single
anatomies in the SA, but rather multiple anatomical structures. So all anatomy regions
or anatomy types [141] would not only be filterable in the FA, but additionally in the SA.
In the SA, the whole head anatomy without synchronization “Maybe with an explosion
view” could be illustrated. Two participants stated more information about sicknesses or
illnesses and anatomical relations in general are desirable. Single HA elements could be
enlarged to fit the whole screen with a bigger text size one participant stated. Another
participant would arrange the menu in the HA at the bottom, so the finger would have
not to travel so far upwards to the first entry.

5.5 Limitations

In this section, only circumstances and properties limiting ARnatomy are treated. A list of
workarounds and issues created during the development of ARnatomy is in Appendix A.2.
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Only the full head anatomy AR with models from Body Parts 3D (BP3D) is supported,
as ARCore only supports HPE. The HPE of ARCore allows only the front camera usage
of the mobile device by design. The back camera of the mobile device can render AR
too, but without HPE. Users tend to capture only themselves with the frontal camera
as the arm extension makes capturing other scenes or objects cumbersome. If the back
camera of ARCore would support HPE, the application cases would be extended, since
posters, books, other renderings of humans, and humans could be camera-captured with
synchronized AR anatomy for the face. For example, ARnatomy or AR in general may
be used in museums, anatomical art installations or expositions similar to Körperwelten
[182] to make the anatomy interactive and hopefully also more interesting, engaging,
detailed, multi-modal, and innovative [183].

Mobile devices have naturally a smaller screen due to their mobility. Multiple HPEs in
the FA are unsupported, because users captured by one mobile device would interfere
each other. In the back camera video stream, horizontal and vertical plane detection time
can be prolonged, if surfaces with poor entropy are captured. The front camera has a
more robust detection than the back camera as already depicted in Figure 5.1. Disparities
or clearly visible patterns on the floor as veins of wood, previously depicted in Figure
3.5, or tile joints accelerate the plane detection. During the development over several
months, short beards, coffee cups and glasses before the mouth, reading glasses as well as
eating had no effect on HPE as long as the user’s eyes are visible. People unfamiliar and
insecure with mobile applications will not be able to explore all features of ARnatomy and
will perform self-directed learning [46] rather cumbersome, which reduces the learning
effect. No special skills are required to use ARnatomy, only being familiar with com-
mon mobile application interactions methods as tapping, swiping, and gestures is required.

All other APs listed in Section 3.1 in identified by Preim and Saalfeld [13] require
professional training for their understanding and are inappropriate for the education
of the general public. Consequentially, other APs are out of scope for this master
thesis. The selected macroscopic and regional APs [13] supported by ARnatomy limit
the target group to the general public, pupils in schools, and patients having interest
in macroscopic head anatomy. An example of a task may be that the pupils have to
describe the anatomy filtered by the filter, which uses medical terms. Afterwards, a
teacher explains the medical terms to the pupils to ensure the correct and complete
knowledge transfer. People having professional training are advised to consult specialised
literature for more information about anatomy, since ARnatomy is medical imprecise and
not medically comprehensive regarding the contained textual information and detailed
model information. The imprecision originates from the lack of FMA descriptions for
all models and the exclusion of all BP3D models smaller than three millimeters, since
the latter could not be identified correctly in the face. However, the general public
can use ARnatomy for education of fundamental macroscopic anatomy and regional
anatomy. The medical staff can use ARnatomy as visual aid to create a more fig-
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urative macroscopic and regional mental picture about head anatomy in a layman’s
mind. The missing medical information in ARnatomy can be explained by the medical
staff, who has professional knowledge. The usage of BP3D and FMA as a conflated
ARnatomy DB imposes several limitations. The utilized flat file collection BP3D [4]
contains 3.493 anatomical models, which is not the whole human anatomy in detail.
BP3D contains a subset of the macroscopic anatomy and regional anatomy and over
time, more anatomy is added by the authors. BP3D was the only free, scientific, and
digital Three Dimensional (3D) anatomy model collection found. The linkage of BP3D to
the FMA [5] DB is unidirectional as the FMA contains 100.000 anatomical textual entries.

Not the full head anatomy is included in BP3D, in Version 4.0 all veins of the head are
missing, and, for example, in Version 4.3 only the right head veins are included. Logically
related anatomy may be missing, e.g. the internal carotid artery is contained in BP3D and
FMA, but parts of the external carotid artery are missing in BP3D. Symmetric anatomy
having a left and a right part may contain only one of the two parts, e.g. the tentorium
cerebelli misses its right half. The opposite is additionally included, symmetric anatomy
can be unified as one model, e.g. the two ears are given as one model and both halfs of the
body are one big skin model making its usage for anatomical regions impossible. The best
fitting ethnicity for ARnatomy is the Japanese ethnicity, since the models from BP3D are
created from Japanese people. ARnatomy can be used on all human ethnicities, but su-
perimposition discrepancies due to their different facial anatomical properties are possible.

FMA has a detailed hierarchy of the human anatomy and only the Identifications (IDs)
and the names are persistent for all entries listed in the Appendix A.1. In the FMA,
anatomy synonyms, anatomy definitions or their translation to other languages are
optional for each entry. If an entry in the FMA has synonyms or definitions, they are
always at least in English, which limits the application language support to English. All
the above facts about BP3D and FMA constitute the medical imprecision of ARnatomy.
Laymen speaking other languages may not know or understand the professional anatomi-
cal terminology in English. The future exchange of BP3D or FMA is complicated, since
the some indices of BP3D vary in its different versions. New versions of FMA are not
included in the current BP3D version or its newer versions. When using another version
of BP3D, only the corresponding FMA should be used. Unfortunately, BP3D has a lower
release rate of new versions than FMA. Due to Sceneform Issue 613 [142], the source
code depends on FMA indices from the generated ARnatomy DB. A model DB update
can therefore only be executed when another DB than BP3D is found. The requirement
that all models of the newly found DB can be converted by the Sceneform converter
must be fulfilled.

Another limitation is that ARCore needs .obj files to be converted into .sfb files to
render them as AR. Because of Sceneform Issue 217 [158], no multiple .obj files can be
converted with the Android Studio Sceneform plugin and the conversion of all BP3D files
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has to be done via the command line converter of Sceneform. The .obj models from
BP3D cause malfunctions in the Sceneform 1.7.0 [23] converter and in versions above
reported in Sceneform Issue 613 [142]. The Sceneform Issue 613 has major effects on
application development. The converter of Sceneform 1.7.0 normalizes the vertices of an
.obj file to its barycenter with the y coordinate set to zero. An automatic positioning
was impossible as all anatomy models differ highly in their appearance and therefore
also in their correct alignment on the 3D axes towards the user. The overriding of the
normalization of all BP3D model coordinates caused the need for a manual anatomy
model positioning, which at least doubled the development time. Versions above 1.7.0 of
the Sceneform converter allow the developer to disable the normalization, but have an
error in the BP3D models.

A version upgrade of ARCore or Sceneform higher than 1.8.0 is impossible, because
only ARCore and Sceneform 1.8.0 function with models converted by Version 1.7.0.
Sceneform Issue 764 [176] adds probably independently from Sceneform Issue 613 an
incompatibility of all Sceneform versions above 1.8.0 with the Nokia 7 Plus mobile device.
Sceneform Issue 764 [176] has to be considered for further improvements. So, ARnatomy
does not profit from error corrections, updates, and features in newer ARCore verions
and Sceneform versions until Sceneform Issue 613 [142] and Sceneform Issue 764 [176]
are resolved. Realism and immersion in ARnatomy are lower as they would have to be,
inasmuch as the environmental High Dynamic Range (HDR) light estimation introduced
in Version 1.10.0 cannot be used.

An assumption is that the colour error depicted in Figure 3.5 in the HA and SA is
related to Sceneform Issue 613 [142]. The transparency is lower in models converted
with Sceneform 1.7.0 as it would be in models converted with higher Sceneform versions
als treated in Subsection 4.5.1. Newer converter versions support additional arguments
controlling the normalization of all coordinates in the converted .obj files and support a
more fine-gained transparency control. The plasticity of augmentations [51, 52] is limited
to a diffuse light change to indicate anatomy proximity in the SA. The reason for the
limitation of plasticity is Sceneform Issue 387 [178], which inhibits accessing the camera
stream for blurring and changing the background colour to black and white on proximity
to the mobile device. Blurred, black and white background colours would highlight the
coloured AR model for more focus as previously depicted in Figure 4.8. Sceneform Issue
798 [172] prevents the rendering of AR behind the 3D face mesh, inside the user’s head,
from ARCore. Without rendering anatomy behind the face mesh, the illusion of looking
inside the own head cannot be created. Instead, a workaround preserving immersion
and AR is implemented via a pinch gesture. A user can translate the overall anatomy
through the pinch gesture on the z axis in front of the face mesh and therefore also in
front of this own head. The translation of anatomy on the z axis creates the impression
that the user can see and dissect anatomy models synchronized with his own head. All
the macroscopic anatomy and regional anatomy of the head contained in the BP3D with
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all its names can be learned. Additional information about the facial anatomy is optional
and depends on the entries in the FMA DB. The limited immersion due to Sceneform
Issue 613 [142] and Sceneform Issue 764 [176] is considered to make the learning curve
for ARnatomy more flat than without the two issues.

The positive effect on spatial knowledge acquisition [75], short-term spatial accuracy and
short-term spatial speed in executing anatomical tasks is impaired. As a consequence,
the learning effect ARnatomy accomplishes is lower as without Sceneform Issue 613 [142]
and Sceneform Issue 764 [176]. The immersion is decreased by the two issues. Hence,
it follows [16] that the learning satisfaction with AR is additionally lower than without
Sceneform Issue 613 [142] and Sceneform Issue 764 [176]. Users having low spatial
abilities have a significant disadvantage in interaction and learning with 3D visualizations
[27] and should learn anatomy with other methods.
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CHAPTER 6
Discussion and Conclusion

Section 6.1 treats the development result, the effects on learning, and the evaluation result
delivered by the Informal Evaluation (IE), consisting of two case studies and an interview,
whereupon the two research questions are answered. Section 6.2 is the conclusion of this
master thesis.

6.1 Discussion

Points for improvement and limitations were discovered through the IE and require future
changes to enhance the interaction, immersion, and learning effect of ARnatomy as well
as to create a more sharper mental pictures about anatomy. However, individuals of the
general public can educate themselves about macroscopic and regional head anatomy
through the developed, Head Pose Estimation (HPE)-synchronized, interactive, immersive,
anatomical, mobile, Three Dimensional (3D) Augmented Reality (AR) application.
Anatomical models and corresponding texts are utilized by AR to create an engaging,
discovery-based [27] learning experience, confirmed by the IE, in the form of a mobile
application named ARnatomy discussed in the following subsections. Subsection 6.1.1
discusses the insights obtained by assembling all utilized technologies during development
into ARnatomy. Subsection 6.1.2 discusses the insights created by the IE. Subsection
6.1.3 discusses the effects of ARnatomy on user education. Subsection 6.1.4 answers to
the two research questions.

6.1.1 Development

The three implemented activities, Face Activity (FA), Hierarchy Activity (HA), and
Single Activity (SA), allow the user to learn macroscopic anatomy and regional anatomy
[13] from three different perspectives. Macroscopic and regional Anatomy Perspectives
(APs) constitute the fundamental knowledge of anatomy, where all other APs build upon.
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Additionally, all other APs require professional training making them inappropriate for
the education of the general public. With the found Body Parts 3D (BP3D) [4] and
its relation to the Foundational Model of Anatomy (FMA), macroscopic and regional
anatomy models and textual information about the models are conflated in a Database
(DB) for ARnatomy.

Having non-replaceable third-party dependencies, i.e. BP3D and ARCore, can create
limitations for the application. Especially, if older versions of the third-party dependencies
ARCore and BP3D are partially incompatible, unique in their field, and newer versions
of both technologies are incompatible as a whole. The uniqueness of ARCore and BP3D
forces their usage. The conflation process of BP3D linked with the FMA enabled many
optimizations making the ARnatomy DB size 42.52 % smaller than without optimization
and fast to query on mobile devices. The dependency on BP3D and FMA decreased
dramatically the flexibility of models as no easy nor fast DB change is possible due to
the overall preprocessing time of one and a half days. At the introduction of new APs
two decisions have to be made, i.e. add data to the generated DB or use a second, new
DB with indices to the first one. BP3D does not publish full, new versions containing
the .txt files required for compound BP3D model processing. Furthermore, BP3D does
not link their models with newer FMA versions, which are published recurrently. In
the future, only newer versions of BP3D containing indices to a FMA version can be
used, which are rarely published. BP3D should be exchanged immediately with any
other scientific anatomy model DB, which is free of charge, rich in detailed .obj files,
and available. No pricing and free availability excluded other anatomy DBs during the
writing of this master thesis.

Users appreciate up to date anatomical information [13], which cannot be visualized
with ARnatomy right now. The dependency on ARCore, with its extension framework
Sceneform [23], released independently from BP3D and FMA newer versions during the
development until a version conflict with BP3D, treated in Sceneform Issue 613 [142],
emerged. Until the rectification of the aforementioned errors, future anatomy models
added to ARnatomy must be positioned manually and cannot be positioned automatically.
A main task of future improvements of ARnatomy should be the automatic positioning of
all 388 facial anatomy models, when a Sceneform converter above Version 1.7.0 does not
fail on the BP3D models. As recommendation for future development, the documentation,
practice-approved usage, age, and interoperability of a technology play a critical role
too in software development. One may focus on the latter mentioned properties of
technology during the search for a new technology and not only on the capabilities and
features. Good source code documentation and interoperability of a technology can avoid
a high time effort and several workarounds during the development. ARCore and BP3D
were in their fields unique during the development of ARnatomy and had to be used
together, despite their partial compatibility previously discussed. ARnatomy consists
of three different anatomical activities, allowing the user to have three different APs
on macroscopic anatomy and regional anatomy. In the FA, the user can interact with
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HPE-synchronized AR models by tapping, swiping, and performing gestures for self-
directed [46], discovery-based [27], immersive anatomical exploration and learning. In the
HA, the user can observe all anatomical details of an anatomy entry from the generated
DB along with the anatomy hierarchy to preserve and extend the generated mental
anatomical picture [33]. In the SA, the user can investigate single rendered AR models on
detected planes without anatomical context and with anatomical information for memo-
rization and a different view. Additional textual information, which is also available in
the SA as in the HA, for a better mental concatenation of learned anatomy is available too.

The FA is the main activity invoked when the application is started. The observation
and interview answers of the IE suggest, that the synchronized anatomy models had the
biggest impact on the eight participants in their first impression. The first interaction
with anatomy followed naturally in a few seconds after the participant’s observed the
HPE-synchronized, rendered anatomy. Each user learned the name of previously unknown
anatomies and their location by simply tapping on the observed anatomy and showing
thereby the corresponding label. Similar learning results showing the potential of
interactive AR anatomy as Bork et al. [184], Blum et al. [29], and Nuanmeseesri et al
[185] were achieved. The participants responded positively and understood that the seen
anatomy is synchronized with their own one. Some instructions given during the IE
had to be repeated two or three times to be heard, since the participants were strongly
focused on the content of ARnatomy. The concentration level of the participants suggests
a high immersion created by ARnatomy, which possibly got increased through the realism
of synchronized eye movement on head tilts and synchronized jaw movements. One older
participant made an amazed comment “Wow this is my head anatomy, ... hey, the jaw
moves with mine!”. Participants familiar with human anatomy recognized the human
skull immediately as basis among other rendered anatomy. The skull was considered to
be a reference to other, internal, rostral anatomy, especially when participants removed
anatomy through swiping across anatomy.

Swiping interactions on anatomy were self-discovered along with the invoked labels, the
search, and the pinch gesture. Knowledge that swiping as interaction method exists
or swiping by accident elicited the swiping on anatomy models. The participants were
confident and seam to expect a swiping interaction method. Generally, older participants
tried swiping on Android components, which are commonly tapped, e.g. popup menu
entries. If Android supports swiping on a component and a swipe action has not already
an action assigned, tap and swipe actions should be the same, so the user can perform
the same actions through different interaction methods. The cache list contains anatomy
elements removed from the face above the user’s head in parallel and is a container holding
the anatomy removed during the digital dissection and exploration. The name cache list,
treated in Section 3.5 and depicted in Figure 3.13, was unknown by the participants,
fast discovered, and the cache list’s principle was immediately understood. The swiping
across facial anatomy causes its translation above the user’s head into the cache list.
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Providing the cache list to observe cached anatomy and add anatomy back into the face
had a positive impact on the users. Comments in the form of “Parts are nicely ordered
as they were removed” about the cache list reflected its positive influence. The cache list
anatomy has the same interaction as facial anatomy, i.e. a tap shows the anatomy name
and a swipe invokes a transition. Various cached anatomy was tapped repeatedly out
of curiosity to see what anatomy was removed from the head. The downward swipe to
translate anatomy into the head from the cache list was discovered by all participants.
Three of the eight participants from the IE discovered that left and right swiping scrolls
the cache list left and right. For a clarification on cache list swipe interaction, an AR
arrow should be positioned at the left and right screen edges, if the cache list extends
beyond the screen due to its overall width. Tapping and swiping the arrows cause a
cache list scroll in the corresponding direction to give users several interaction methods
to achieve their intention. Depending on the anatomy width, up to five anatomy models
fit into the cache list without going out of the screen, which irritated some participants
for some seconds.

Only with tapping and swiping, the user is able to explore his own facial topmost rostral
anatomy spatially and is able to learn the location, the context, and the name of anatomy.
A pinch gesture as third interaction method beside tapping and swiping is required to
explore internal head anatomy, i.e. rostral anatomy. As no tutorial, only a text informed
the participants about the interaction methods, the pinch gesture was discovered by four
of the eight participants. The assumption that the most participants will try or discover
the pinch gesture as interaction method to translate anatomy rostral was wrong. The IE
confirmed that a not-closable tutorial, discussed later in Section 6.1.2, undergone by the
users on the first application start is required to teach the interaction methods. The other
half needed a hint “Can you go deeper?” to try other interaction methods and people
unfamiliar with mobile devices may not discover z axis translation through the pinch
gesture at all. Furthermore, people unfamiliar with common icons used in digital content
and on mobile devices may have troubles finding actions as the textual search, whose
symbol is an outline of a magnifying glass. The two oldest participants needed several
seconds to discover the textual search Floating Action Button (FAB), learning the three
most important icons beforehand may lower the user’s unconcern through unknowing,
which inhibits interaction.

6.1.2 Informal Evaluation Insights

One insight of the informal evaluation was the requirement of an instructional tutorial.
The instructional tutorial should learn the user the interaction possibilities by requiring
the user to do the supported interactions once at the first startup of ARnatomy. If the
user gained interaction confidence through the instructional tutorial, the users’s cognition
focuses more on anatomy learning and anatomy exploration instead of interaction explo-
ration. The icon learning should be included in the instructional tutorial for an increased
orientation of the user in ARnatomy. The information dialog failed to inform seven of
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the eight participants about the interaction and the dialog lacked any explanation of the
used icons. The lack of interaction knowledge was observed in the two case studies and
highlighted by the answers of the interview. Important to note is, six of eight participants
suggested some kind of interaction introduction without any specific questions concerning
an interaction introduction or a tutorial.

At application start during the DB extraction in the background thread and instead
of the information dialog, an interactive, not skippable tutorial could be run utilizing
the previously described benefits of constructivism and embodied cognition [26, 75, 27].
Instead of reading interaction methods, users must execute the interactions to achive a
better memorization. The tutorial instructions should to be given twofold, i.e. few words
as AR 2d view at the bottom screen edge show the user what to do with clearly visible
graphical cues as depicted in Figure 6.1.

Figure 6.1: Created with image manipulation, to illustrate the initial interaction tutorial
for the tapping interaction. Long tap, swipe, pinch, and icon tutorials should be highly
similar.

Tapping, long tapping, swiping, and the pinch gesture would be visualized, as depicted
in Figure 3.20, for consistency in the same style as the hand motion picture of ARCore,
previously depicted in Figure 3.20. The user is forced to execute all interaction tutorials
sequentially once after the installation of ARnatomy. All other interaction methods than
the required one by the tutorial are turned off, so no false interactions can be made. The
anatomical model used in the instructional tutorial is the frontal bone. The frontal bone
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is a relativly large model and seen always on application start. When the instructional
tutorial is completed, the user has at least one anatomical Point of Reference (PR), i.e.
the frontal bone. The pinch gesture should be mediated at last in the tutorial to achieve
the best memorization after the tutorial. The importance of the pinch gesture originates
in its poor discovery by only four of the eight participants. The four other participants,
which did not discover the pinch gesture, received a hint after 30 seconds. Users familiar
with mobile device interaction would finish the tutorial in a few seconds, and unfamiliar
users can take the time they need.

As “active learning constructs spontaneous knowledge” [13, 15], the memorization of the
gained knowledge is more persistent through interaction than non-interactive learning or
non-interactive knowledge transfer. Hence, the commonly used, most important icons in
the application, i.e. the search icon, menu icon, eye icon, and face icon, should be learned
too. The icon memorization can be enhanced by letting the user write the icon name
written above or beside the icon in a text field. Familiar users would go fast through
the tutorial and unfamiliar can take their time to observe and learn what the icons are
representing. After tutorial completion, the DB extraction may be finished so the user
would experience no or at least a decreased waiting time. The learning curve [186] is
currently flatter as the learning curve would be with the tutorial. A juxtaposition of the
expected learning curve and the current one as illustration is depicted in Figure 6.2.

Figure 6.2: An assumption of the current learning curve based on the performance of the
eight participants compared to the tutorial one. The tutorial learning curve is expected to
be far more ascending due to the required interaction in the tutorial. The upper boundary
of both curves marks the capability of performing tapping, long tapping, swiping, and
the pinch gesture.

The learning curves depicted in Figure 6.2 are both an assumption, since different learning
types exist and users may experience the instruction tutorial along with the preservation
of the gained knowledge differently [186, 27]. Some of the interaction methods may have
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to be repeated or rediscovered until they are remembered, but they would have been
shown once at least and be known at best. By implementing the tutorial, the user is
expected to learn faster the application interaction and has afterwards less cognition load
from interaction as Pusic et al. [186] and Diegmann et al. [27] show. Küçük et al. [187]
showed that less cognition load yields to more learning.

With a tutorial, more than one participant may have found the cerebellum and pons.
The exploration direction of the cerebellum and pons was through the forehead slightly
tilted downwards, highly sagittal and slightly transversal. Far too much anatomy was
between the participants and the cerebellum, especially small anatomy contained in the
diencephalon, all cerebral arteries, and saggittal nerves near the brain. The case study
cerebellum was considered to be completed after one to two minutes as the interaction for
target anatomy discovery was repeatedly performed on other anatomies. The participants
learned through their exploration, although the case study completing anatomy, i.e. the
cerebellum and pons, remained unexplored. Various other anatomy explored by the
participants located in the sagittal direction not far inside the head, as depicted in Figure
6.3, would have been a better choice for a fast anatomy exploration.

Figure 6.3: The coloured anatomy, with external labels shown, is best choice for search
targets in the first exploration of a case study due to their close location to the forehead.

In future case studies, the target anatomy depth should be proportional to the number
of anatomy already learned by the participant. Interesting would be another IE con-
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ducted the same way with the same two case studies, but with the proposed tutorial
implemented and the target anatomy set more rostral. All participants understood that
the textual search results in the FA redirected them into the HA. During the activity
translation, an animation of the anatomy name translating the name from the previous
to the new location is displayed to preserve the created mental picture and extend but
not replace the mental picture through more information for a better learning effect
[33]. Title and optional synonyms, definitions, and Two Dimensional (2D) model ren-
dering of an anatomy are displayed, if in the DB, to amend the mental picture of the
user generated in the FA. The 2D model rendering in the HA should to be an addi-
tional visual verification for the user that the anatomy according to the users will is shown.

One participant suggested to put the entries in the HA at the bottom instead of at
the top to have the anatomy in the reach of the fingers and to avoid stretching. The
suggestion could be extended by evolving the hierarchical anatomy bottom up instead
of currently top down as depicted in Figure 5.4. Avoiding a the stretching of fingers
may have an effect on the User Experience (UE) too, since camera occlusions may be
prevented more often. Mobile device camera occlusions in the face or SA are severe, since
the scene graph is deleted automatically by ARCore and the application status is lost.
The frequency of camera occlusions depend on the finger stretch of the user during the
interaction. The immediate re-detection by ARCore of the user’s face makes no difference
for the application status loss. A solution would be to utilize the generated anatomy
node structure as cache and to recreate the previous ARCore scene at the next face
detection. But ARCore scene graph recreation along with application state preservation
is complex and time intensive, and reserved for future work.

The upward and downward loading of the anatomy hierarchy in the HA is intended to
add a hierarchical context and grouping to the created mental picture. All participants
understood immediately the created hierarchy and the interaction possibilities through the
popup menu. The items in the popup menu of an anatomy entry with the prefix View fos-
tered curiosity and are intentionally ordered at the top of the popup menu. The immersive
activities and views with their positive effects on learning [13, 15] should be accessible first.

Coming from the HA, the SA renders single, isolated 3D anatomical AR models on de-
tected planes. On SA start, the hand motion picture of ARCore confused all participants
as wrong surfaces prevented the plane detection. The reason for the plane detection delay
was the camera-captured surface, uniform texture aggravates plane detection, i.e. wood,
stone, or tile surfaces are well suited for detection. An information text or an animation,
which suggest to capture textured files or distance changes to the surface, may accelerate
the detection. As no other contextual anatomy is rendered in the SA, enough space is
available to render the name, synonyms, description, and the model of an anatomy DB
entry. The intention is to extend the generated mental picture of the anatomy model from
the FA or HA with information the user does not know or wants to read again. In the
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SA, the hierarchical loading as in the HA is unavailable due to the isolated view the SA
is designed for. A conflation of the HA, depicted in Figure 5.4, and the SA, depicted in
Figure 5.5, rendered as AR could increase the overall immersion and learning effect. The
question is how to render FMA entries located in a complex hierarchy, e.g. 15 anatomy
ancestor entries without any models hierarchical as AR. Scaling the hierarchy entries
to a smaller size may be an option, i.e. the user would simply have to go closer to the
rendered AR objects with his mobile device. Another amendment of the SA rendering
my be the introduction of the currently supported filtering options from the FA. The
filters of the FA could be in the SA menu to render not only single anatomies, but the
anatomy regions and anatomy types as published by Rohen et al. [141]. The hierarchical
relation could be visualized with the same lines from the external labels as depicted in
Figure 6.3.

With the interaction knowledge from the FA, all participants engaged with the anatomy
in the SA almost instantly. Swiping relocates the anatomy similar as in the FA, but
in the SA the user has the full control of the anatomy location on the detected plane.
A participant made an interesting comment on zooming into cells. Indeed, zooming
may be a transition to enter another AP, e.g. a microscopic anatomy. The activity
transition would have to be approved by the user before its execution to prevent unwanted
perspective changes with a high computational demand. With the addition of microscopic
anatomy, ARnatomy becomes more interesting to the medical staff. Laymen lack the
knowledge to comprehend microscopic images or visualizations, but the medical staff
may use ARnatomy as visual aid in the microscopic perspective of anatomy too.

All participants gave positive feedback about the application and its possible usage in the
medical field as consultation aid operated by medical staff. Participants seem to sense
that their interaction, or an interaction during a consultation, would require too much
cognition and draw the attention, focus, and understanding away from the information
given. Patients want all their attention available and unimpaired to understand their
illness, its origin, and treatment during a consultation. Stationary screens in a medical
facilities are bigger than mobile devices, draw less cognition to interaction, and would
allow users with impaired sight to recognize more content. General anatomy knowledge
can improve the information exchange between doctor and the patient, particularly after
a diagnosis [1]. Successful exchange and communication between patients and the medical
staff effects indirectly treatment success and compliance.

AR in general facilitates the presentation of anatomy affected by a treatment or by
a surgery and the consultation quality rises the more synchronized the anatomical vi-
sualization is with the patient’s body. The medical staff can give a more figurative
explanation with the superimposed anatomy drawing a clearer, representative image in
the patient’s mind [1]. Rehabilitative measures after surgery have the most benefits of
patient knowledge and awareness [1]. Indirectly surgeries may benefit too from using AR
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during consultations, since knowledge and awareness form the basis of patient approval
for the surgery. Unfortunately, in the last years the consultation duration decreases, but
ARnatomy has the potential for a faster and more precise knowledge transfer [1] than
verbal consolation to due to its AR anatomy illustrations in the same time than without
AR. Familiarization with interaction techniques are required to use ARnatomy. The User
Performance (UP) in the two case studies was in strong relation to the minutes daily spent
on the mobile device. Derived from the data of the eight participants depicted in Table 5.2,
the users require rudimentary mobile device interaction abilities and understanding about
tapping, swiping, and pinch gestures to be able to educate themselves with ARnatomy.
Derived from the observations taken in the two case studies, it seams that insecurity and
concerns about interaction creates too much cognitive load inhibiting the anatomical
learning. A high time investment and better familiarization may counterbalance the high
cognitive load, but this assumption needs further confirmation.

All participants stated that after at most 10 - 15 minutes of exploration, the whole appli-
cation interaction can be learned, which is encouraging for a longer and frequent usage of
future users. The participants learned quickly from their mistakes and managed to recover
from them. All participants completed the second case study faster than the first one,
since several actions and components were remembered from the first case study. Nearly
all participants knew immediately what to do when a case study component was acciden-
tally already invoked or visited. The successful self orientation of all participants suggests
no false mental pictures about the User Interface (UI) nor the interaction were generated
throughout the whole application usage. The intention to keep the UI simple and only
implement common interaction methods to let the user focus more on learning was fruitful.
Because the last case study component instructions could not be spoken fast enough for
some users, they thought the study was over and performed other actions in the meantime.

The IE is considered to be successful due to the insights obtained from two case studies
and the answers from the interview with open-ended questions [180, 181]. Seven partici-
pants welcomed the anatomical visualizations with interest as well as excitement and
could imagine that there is a positive effect on learning anatomy when the participants
were asked about that. The positive feedback from the participants may came from no
previous experience with AR [76] and the general interest in anatomy of seven partici-
pants. The participant opinions on AR were that AR is interesting, modern, memorable,
and immersive. Only one participant had no interest in anatomy, rather in the AR
technology and how he could view the stationary anatomy in the SA by dynamic camera
movements. The positive feedback reflects the often reported higher user satisfaction of
3D visualizations compared to 2D teaching methods [75]. Only the oldest participant
was slightly upset after the case study completion, since the exploration time was longer
and more cumbersome compared to the other participants. The application was still
considered to be beneficial for learning by the oldest participant, notwithstanding “Rather
for people keen for new technology”. Many insights were gained through the IE. Each
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participant had at least one behaviour, perception, view, critic, or statement, which
obtained an insight having the potential to improve the mobile application. The two
case studies made design flaws and interaction flaws visible as well as the interview
depicted how the users preceived the application outlining detailed issues or future ideas.
The IE results show that simplicity and minimalism in digital technology can be a
double-edged sword. A non-complex UI and low application depth makes the interaction,
orientation, and understanding simple. Too few PRs, known content or common content
can cause concerns on how intentions can be accomplished. An insight obtained by the
IE concerning user studies is that the latter help to find the transgression of necessary
reduction as well as unnecessary extension.

The interaction of ARnatomy was not always clear and can be improved. Front camera
occlusions created an unexpected restart. Most users did not know what they had done
wrong as they focused what their thumb or index finger was doing and not were their
other fingers were. A message for clarification may be displayed to at least give the user
the possibility of knowing what happened. The exploration of interaction methods is not
as immersive, nor exciting as the exploration of anatomy and information texts about
interaction help little. If possible, users have to perform an interaction at least once, in
an instructional tutorial for example, to be aware that certain interaction methods exist,
especially, if multiple interactions should be learned. Similar anatomy renderings have the
potential to be perceived as one anatomy entity and should be clearly differentiable. A
mechanism for differentiation could lead to a better memorization of the learned content
[79].

This paragraph treats general insights and ideas obtained by the IE. The interest in
new technology, in this case AR, can persuade users unfamiliar with that particular
technology to use an application, albeit no interest in the application’s content is given.
Interest in the content can then arise through the created curiosity on the first impression
and through the mere application usage. Any kind of content verification, best from an
institution, is beneficial for the user’s trust in the application. One application may have
several application cases, which are found best by asking multiple people and multiple
users. In the future of AR, probably the fusion or even its relay with or through mobile,
interactive, markerless holograms may be realized. The requirements of younger and
older people on mobile applications should be considered in the software development.
Similar to the results of Bork et al. [184], questions about the appearance of seen anatomy
had an instant response from the participants. Seven of the eight participants could
explain verbally what anatomy they have learned and memorized two anatomy structures
within 09:44 minutes through interaction, without any instruction to learn anatomy. The
graduate psychiatric nurse did not learn something new. During interaction, anatomy
visited before had a high recognition rate, e.g. participants often said the name of an
anatomy when they were swiping across. Letting the participants sketch the learned
anatomy would have been interesting as an additional feedback and visual illustration of
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the learning effect.

6.1.3 Effects on Learning

Macroscopic education is the basis of some medical studies and key for an advanced
training of a surgical subject. Learning on and with the own body has significant benefits
for spatial abilities [1]. Institutions for basic education as high schools can establish a
more student focused learning with multi-modal AR applications including ARnatomy
for head anatomy education. The anatomical spatial comprehension and learning are
facilitated through the 3D AR renderings and the immersion [33] of the latter. Learning
with AR extended with textual information is superior to 2D teaching methods but not
to all traditional learning approaches [75]. In studies about education [75, 27] with 2D
visualization learning groups and 3D visualization learning groups, the latter achieved
the best results.

In the IE, participants less familiar with head anatomy learned that they are viewing
the human skull and became, through their self-directed, ongoing exploration [46], more
familiar with the head anatomy. The participants learned something about anatomy in
the aspects of position, location, orientation, name, or complexity as the participant’s
answers to the asked questions show. The participants learned two anatomy structures
within 09:44 minutes through interaction, without any instruction to learn anatomy, which
suggests that the memorization of anatomy is created through active learning [13, 15].
The number of learned anatomy under ten minutes may improve when the application
is used frequently over a period of time for a specific learning goal, e.g. learning for an
anatomy test. A future study on learning a specific anatomy type or anatomy region
with ARnatomy can be that participants learn the content 15 minutes a day for one week.
To test the gained short-term knowledge, textual questions and hand-drawn sketches
could be demanded from the participants on the last weekday. The textual questions
and hand-drawn sketches could be repeated as test after one week and one month to
test the medium-term learning effects and long-term learning effects too. However, the
learned anatomy during the IE encompasses bones, parts of the brain, arteries, nerves,
and the complexity of the brain. The high memorization rate of bone anatomy with
53.33 % compared to residual anatomy may come from the fact that bones are one of the
topmost rostral anatomy types and contain some of the biggest anatomy entities. In the
mean, female participants memorized 1.75 and male participants 2.6 anatomy structures.
If the currently researched differences of the spatial abilities between the sexes [188, 189]
had an influence on the learned anatomy remains unknown. Studies with hundreds or
thousands female and male participants could maybe answer the question, if spatial AR
learning is preferable for females or males.

A question is how long the participants remember the spatial knowledge. Most studies
conducted and confirmed that AR benefits for short-term memorization [13, 27, 16, 77, 78].
Only learning mathematics with AR has significant long-term effects shown by Som-
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merauer and Müller [78], but not in general nor for anatomy. Desirable would be a
confirmed medium-term learning effect and long-term learning effect by learning spatial
subjects with AR, e.g. macroscopic and regional human head anatomy. A future study
with ARnatomy as mobile learning technology may bring new insights on short-term
memorization, medium-term memorization, and long-term memorization. The researchers
could focus on the study, its quality, its structure, and its execution, since the technology
is already developed in this master thesis. As proposal, a Randomized Controlled Trial
(RCT) [79, 190] study could be conducted with two groups for short-term, medium-term,
and long-term, memorization. One participant group learns with ARnatomy the other
group not with AR, but with traditional learning. A parameter in the proposed study
could be the separation of subject matter into non-spatial and spatial to see the relation
of AR to non-spatial and spatial learning in short-term, medium-term, and long-term
memorization more clearly. Other confirmed and researched attributes than spatial AR
may contribute differently to short-term, medium-term, and long-term memorization
types. These attributes are augmented emotional engagement, increased user satisfaction,
perceived own effectiveness, motivation, attention, concentration, creativity, interactivity,
and a steeper learning curve [13, 16, 17, 26, 27, 28, 75, 76, 77, 78, 191, 192].

Learning with AR can have some undesired effects too encompassing justified criticism.
Users having low spatial abilities have a significant disadvantage in interaction and
learning with 3D visualizations [27] due to the increased spatiality of learning. But, if the
users learn over a long period of time, approximately one year, students with lower spatial
abilities can have significant higher improvements in understanding of spatial anatomy
than students with a high spatial abilities [184]. For example, only the oldest participant
struggled during the case study, but still manged to complete both case studies. If
a learning inefficiency is experienced, one should not force oneself to learn with AR
education tools, but rather switch to other learning tools or techniques. Facilitated spatial
knowledge gain linked with information is the main advantage of AR, but many other
non-spatial knowledge about anatomy exists too. In comparison to traditional learning,
learning on a mobile device has the problem of lacking details [193], which cannot be
counterbalanced by a longer usage. Longer mobile device usage would introduce even
more problems, since reading hard copies is more comfortable for the eyes and causes
less eye fatigue than reading on a mobile device [194]. In general, long and intense usage
of any kind of computer with a screen causes eye fatigue [194], social exclusion, and
social isolation [195], myopia in pre-school children. The total number of myopia patients
increases steadily in the last decade [196]. In general, a message after one hour should
remind the user to take a break from the continous mobile device usage. Micro lessons
[191] are an option too to prevent myopia, i.e. learning on mobile devices is implemented
as small tasks and short readings in a multi-modal learning context, which contains the
benefits of AR learning. The interaction should be as intuitive as possible, otherwise
the cognition is drawn away from learning to interaction decreasing the positive effects
for learning. Users may focus more on the novelty of the technology or new devices as
instead on the displayed content [75, 79].
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Other activities on the user’s own mobile device may distract the attention fully or as short
learning disruption, e.g. writing messages, social media consumption, sending pictures,
searching information on the Internet, taking pictures or capturing videos. Non of the
previous mentioned distractions was experienced during the IE. Learning independence
is defined as “The behavior of student in manifesting their wants or desires in a real way
by not relying on others [191].” The digital distractions have the potential to transform
independent learning into doing something else independent from learning. Learning with
mobile applications may require dedicated devices without installed distractions, time
logging implemented to ensure that a certain time is spent on the learning application, if
specific content is viewed or invoked. Students of the 21th century are keen on learning
with the newest technology, which certainly can foster independent learning, if it appears
intuitive and modern to the learners [191]. As some participants were highly focused
on the ARnatomy content and instructions had to be repeated two to three times, it
is assumed that ARnatomy has a high immersion. The high immersion of AR and
the related concentration increase showed by Diegmann et al. [27] can lower digital
distractions of users.

6.1.4 Answering the Research Questions

With the gained knowledge, data from the literature, and from the IE of ARnatomy, the
two following research questions are answered in the next paragraphs.

1. How can interactive AR be used in anatomical education for the general public?

2. How much and what anatomy can be learned in which time with the developed
application compared to state of the art works?

The answer to research question one is through any publicly available, mobile AR anatomy
application, which synchronizes anatomical models with additional textual information in
realtime on the user’s own body parts. ARnatomy achieves a subset of the previous answer,
since the aforementioned usability problems of ARnatomy limit its availability to science.
Future improvements can make ARnatomy publicly available. The mobile device usage of
the general public increases [8, 9, 10] and with publicly available mobile applications, the
potential of public education increases too. Several recommendations were identified for
beneficial learning properties of an education application of anatomy with AR. Beneficial
for interactive AR is the usage of pose estimation to synchronize the supported anatomy
region and its models in realtime. Anatomy synchronized with the user’s own body or
another camera-captured body enhances the positive learning effects of AR and increases
immersion. The immersion is proportional to interest, motivation, eagerness, attention,
concentration, and user satisfaction [26, 27, 75, 76, 78, 79, 183, 191, 193], which are
important factors of learning.
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Bork et al. [184] conducted an one year study with medical students including the relation
of macroscopic and regional anatomy with radiographic pictures of anatomy. In questions
concerning identifying macroscopic and regional anatomy in radiographic pictures, the
medical students had deficiencies [184]. When medical students with an anatomical edu-
cation have deficiencies in learning the relation of topographic anatomy of radiographic
pictures, how can laymen of the general public learn radiographic AP? Further and other
learning modalities are required to teach the linkage between macroscopic and regional
anatomy and radiographic AP more efficiently. ARnatomy can only teach macroscopic
and regional anatomy [13]. The difficult understanding of macroscopic and regional
anatomy in radiographic pictures cannot be achieved by ARnatomy. However, the macro-
scopic and regional APs of head anatomy can be taught by ARnatomy, whereupon other
APs build. Laymen can comprehend macroscopic and regional anatomy, i.e. anatomy
observed with the unaided eye, without any professional training, which does not apply
for other APs. When the user has learned something about macroscopic and regional
anatomy with ARnatomy, the user should know at least the anatomy name, the anatomy
location, and the anatomy appearance. Since then the user has a “minimal working
knowledge” of anatomy as Turney [197] states, and can rudimentary communicate with
others, especially the medical staff, about macroscopic anatomy.

All contained anatomical information in an education application should be scientific
and medically correct, not verified information should be avoided to prevent the distrust
of users. The interactive, rendered, synchronized, anatomical AR models should show
at least their name during the most simple interaction in an application and provide
opportunities to receive more information on one click. The requirement of showing at
least the name originates in the importance of terminology in communication as Lampert
[198] states. A user should be able to call learned anatomy entities by their name,
otherwise the communication “falls out of form” [198]. The anatomy models should be
mapped realistically for high immersion. The interaction should allow the user to perform
a digital dissection [26] and assemblage for self-directed [46] discovery-based learning
[27] and self-directed [46] exploration, since “Active learning constructs spontaneous
knowledge” [13, 15].

Human anatomy is highly complex, filtering of anatomy regions and anatomy types [141]
should be included to allow the user a more focused exploration than without anatomy
filtering. A textual anatomy search for all supported models should be included too, if
the user wants to search or discover a particular anatomy. In general, an application
should preserve the first generated mental picture about the content as long as possible
and should try to avoid the replacement and the recreation of multiple mental pictures
of the same content for effective memorization [75]. Individuals of the general public
should require as less technology as possible for their mobile or electrical education to
make the access to the latter easy, convenient, and everywhere applicable. Currently, the
best choice today to accomplish access to education easily is an application for a mobile
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device or a website [199] as the growth of the former is ten times higher than computers
in the eighties and two times higher than the internet in the nineties.

The answer to research question two is that the participants learned in the mean two new
rostral anatomy structures within the mean time of 09:44 minutes, which is similar to
state of the art works. The number of learned anatomies, depicted in the previous Table
5.3, was retrieved through the participant’s answers of the questions, listed in Appendix
A.3, which were asked after the two case studies. The overall mean time of 09:44 is the
sum from the two case study mean times of the IE. When a human head is viewed from
the front, the rostral anatomy is the first and topmost anatomy, which explains why the
most anatomy learned by the participants is located rostrally. The identified state of
the art works depicted in Table 6.1 do not declare what anatomy is learned in which
time, rather the education time of the participants and if there was an improvement on
previously conducted tests or not.

Work Year AR UBS NP ST MT ET
ARnatomy 2020 ML HPE 8 x 09:44 minutes
Bork et al. [200] 2020 ML none 16 2 hours
Kugelmann et al. [201] 2018 ML Kinect 880 5 months
Noll et al. [79] 2017 MB none 44 x x 45:00 minutes
Küçük et al. [187] 2016 MB none 70 x -

Table 6.1: Juxtaposition of ARnatomy with state of the art works educating users about
anatomy with AR. AR = Augmented Reality, UBS = User Body Synchronization MB =
Marker-Based, ML = MarkerLess, NP = Number of Participants, ST = Short-Term, MT
= Medium-Term, LT = Long-Term, ET = Education Time

Criteria of the selected works in Table 5.3 was that the education topic is anatomy
and the content is mediated through AR technology. Works, which are more similar to
ARnatomy as a mobile application with interactive, face-synchronized 3D, markerless AR
anatomy models, were not found. The comparison with the works in Table 5.3 involves
different properties, as the data situation for all identified state of the art works is unequal.

Noll et al. [79] and Küçük et al. [187] had different results on short-term memorization.
Noll et al. [79] state that learning with AR resulted in no significant advantage compared
to traditional learning, Küçük et al. [187] state there is a significant short-term advantage.
The discrepancy maybe originates in the different implementations, since Noll et al. [79]
use marker-based AR on humans and Küçük et al. [187] use pictures for marker-based
AR in a book. The results of ARnatomy seam to be aligned with Küçük et al. [187],
because two anatomies were learned in the mean of 09:44 minutes without the goal of
learning them. The anatomy memorized in detail with ARnatomy was learned through
interaction, i.e. active learning [13, 15]. From all works in Table 5.3, only Kugelmann et
al. [201] and ARnatomy synchronize AR models with the the user’s body. Kugelmann et
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al. [201] have a stationary screen using a Red Green Blue Depth (RGBD) camera on the
top, which serves as the magic mirror to synchronize 3D anatomy models and Magnetic
Resonance Imaging (MRI) with the user’s body. ARnatomy uses in the FA only HPE
without any depth information to synchronize the 3D anatomy models with the user’s
face. Bork et al. [200] use markerless AR on a flat surface, e.g. a table, which is highly
similar to viewing a single anatomy in the SA of ARnatomy. Kugelmann et al. [201] and
Bork et al. [200] contain both APs available in ARnatomy. The participants in ARnatomy
memorized in the short-term in the mean two new anatomy structures under ten minutes
just by interaction, without a set goal or set intention for learning. Noll et al. [79] were
the only authors reporting on medium-term learning effects, wherein the participants who
learned anatomy with AR performed significantly better in tests than other participants.
In Table 5.3, long-term effects where excluded as no referenced work declared any results
about long-term effects. After one month of the IE, the participants of ARnatomy
were contacted in a short telephone interview and asked, if any learned anatomy name,
location, or appearence is remembered. No specific anatomy was remembered by the
ARnatomy participants, only the general rendering and interaction of and with ARnatomy.

Kugelmann et al. [201] and Bork et al. [200] did not declare, if their participants
memorized new anatomical knowledge, rather a high user satisfaction, appreciation, and
that the users perceived the learning applications as useful and practical. The ARnatomy
participants of had the same view on AR as the participants of Kugelmann et al. [201]
and Bork et al. [200]. Kugelmann et al. [201] and Bork et al. [200] had by far the
longest education time of their participants, reoccurring over 5 months, which would have
given different learning results, especially for medium-term or long-term memorization.
Küçük et al. [187] did not specify how long the participants learned with the developed
application. In ARnatomy the participants learned actively through interaction and
probably with the shortest time, which makes a comparison insufficient for the works
with short or no times. Similar as the user study times, the number of participants differ
highly between all identified works, i.e. minimal eight and maximal 872. Only Bork et al.
[200] supported simultaneous learning for multiple participants on the same rendered
and viewed anatomy models.

In all identified works the models used, their rendering, and the AR technology differ
too. Bork et al. [200] use 3D macroscopic anatomy models synchronized on the full body
on a stationary screen. Kugelmann et al. [201] render pictures of different skin diseases
on the skin detected by markers. Noll et al. [79] render 3D macroscopic anatomy models
and two graphs, which are all not synchronized with the user’s body. Küçük et al. [187]
use 3D anatomy models, videos, and graphs rendered on top of pictures depicted in a
book. ARnatomy synchronizes the head anatomy models from BP3D with the user’s
head on a mobile phone. The attributes markerless, mobile, and user-synchronized make
together ARnatomy unique in the field of anatomy AR education. ARnatomy had as only
work in Table 5.3 individuals of the general public as target group. As another difference
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to all other works, ARnatomy had not one medical student as participant, whereby all
other works in Table 5.3 had only medical students as participants. The testing with a
homogeneous participants, i.e. only medical students, introduces a bias in the results [202]
and in the comparison with ARnatomy, wherein more inhomogeneous participants were
tested. The bias is considered to be small, as the number of participants in ARnatomy is
the smallest compared to the other works in Table 5.3 and big numbers of homogeneous
participants counterbalance the introduced bias. ARnatomy shares some properties with
all selected state of the art works in Table 5.3, but the small subsets of properties among
the identified works inhibit further comparison. However, the participants appreciate
learning with AR from all works in Table 5.3 including ARnatomy, which is in alignment
with previous conducted studies [13, 16, 17, 26, 27, 28, 75, 76, 77, 78, 191, 192]. The
works in Table 5.3 which asked for obtained anatomical knowledge or tested the obtained
anatomical knowledge resulted in advantages for at least short-term memorization.

The major difference of ARnatomy to the works in Table 5.3 is that the participants
learned two new anatomy in the mean time of 09:44 minutes without instructions nor
the goal to do so. The goal in all other studies with longer usage times was to learn
anatomy and in the IE of ARnatomy, with shorter usage times, the goal was that the
users learn anatomy through interaction during self-directed [46] and discovery-based
[27] exploration. The learned anatomy with ARnatomy in a relative short time compared
to the state of the art works in Table 5.3 suggests promising anatomy learning properties.
The results obtained with ARnatomy and in the works in Table 5.3 confirm other results
[16, 75] as well as the potential of AR as useful addition in macroscopic and regional
anatomy education. Despite the short tested learning properties of ARnatomy, the
positive outcome of the IE aligns the potential of this master thesis with the state of the
art in anatomical AR education.

6.2 Conclusion
The mobile application ARnatomy was developed to educate individuals of the general
public with anatomical, interactive, Three Dimensional (3D), Augmented Reality (AR)
models [4] linked with textual information [5]. The models in ARnatomy are synchronized
with the user’s face and show additional information about anatomy during interaction.
ARnatomy creates one mental picture [75] per anatomy entity and tries to extend the
created mental picture with further information through the three developed perspectives
on anatomy a user can occupy. In ARnatomy, the name, the synonyms, the definition,
the appearance, and the location of macroscopic and regional [13] human head anatomy
can be explored self-directed [46] and discovery-based [27]. Tapping, swiping, and pinch
gestures are the interaction methods, which were all learned naturally by the eight partic-
ipants after a short familiarization time during the conducted Informal Evaluation (IE)
[45] of ARnatomy. The IE comprised of two case studies with an interview afterwards and
tested short-term memorization. Seven of the eight participants have gained anatomical
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knowledge in geometrical, spatial, and textual form. One participant, which did not
learn something new, had already detailed knowledge about head anatomy. The other
seven participants learned two anatomy structures within the mean time of 09:44 minutes
through interaction, without any instruction to learn. The participants knowledge gain
does not represent the general public and the results are therefore not applicable to the
general public, but significantly convincing as other works [29, 79, 184, 185, 187, 200, 201]
for the potential of mobile anatomy education with AR. Anatomical, spatial abilities
along with short-term memorization [13, 16, 77, 78], the user satisfaction, as well as the
user concentration are increased when using AR renderings for learning [27, 28, 75]. The
aforementioned and positive effects were observered on the participants during the two
case studies of the IE.

Usability problems were identified through the IE in the application giving valuable
insights for improvements as well as attributes and properties to be mindful about in
the future. Camera occlusions causing an automatic application restart have to be
communicated and an initial interaction tutorial should mediate through accomplishment
the interaction possibilities once. Each rendered anatomy should be clearly differentiable
from each other anatomies via a colour-coded filtering, which can be turned on and off.
Besides individuals of the general public, the medical staff can use ARnatomy as visual
aid during consultations to create a more figurative mental picture about macroscopic
and regional head anatomy in the user’s mind. The mental picture in the user’s mind can
then be refined by the professional information explained by the medical staff. Albeit
the contained scientific anatomical information [4, 5] in ARnatomy, its private usage or
its usage in the medical field can only educate and support users [1]. ARnatomy cannot
replace the consultation of a physician. Publications concerning education with AR grow
[21]. ARnatomy and the obtained insights hopefully participate positively in the future
of education with AR.
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CHAPTER 7
Future Work

Many extensions and improvements can be made and are reserved for future work as
they impact many areas in the source code and application interaction, which were too
time consuming to design and to implement within in the time limitations. Many ideas
originated during research, implementation, the Informal Evaluation (IE) or as ideas.
Shareable hyperlinks to application views are supported by Android. Links to show
specific anatomy could be included in ARnatomy for easier and faster user communication
about anatomy. Sending messages to the mobile device of a patient becomes possible too,
through sharable hyperlinks of anatomy. Additional information or references concerning
anatomy as region highlighting, small comments or notes could be included in the link
parameters. In education facilities, a teacher may send to the students a link for their next
task, homework or as simple visualization of anatomy during a class. When experiencing
pain, patients may communicate the affected region or anatomical structure to doctors
via hyperlink. Doctors could share hyperlinked anatomy too, e.g. for remote consultation
and remote treatment. Users would be able to send other users messages including a link
to an anatomy. The medical staff may benefit from shareable anatomy visualizations too,
since educational levels about anatomy are different among nursing personnel, therapists,
doctors, and patients causing sometimes misconceptions. Museums, art installations, or
expositions concerning anatomy can benefit also, as they could send Augmented Reality
(AR) preview messages to persuade the recipients for a visit.

The application may be extended to add notes or multiple choice questions [28] to
anatomy objects or Anatomy Perspectives (APs) for learning. Even short videos, sounds,
or images for ARnatomy customization may be added by teachers or the medical staff
for an adapted guidance of discovery-based learning [27]. The customization should be
possible without any programming skills [28] to not limit the interaction to information
technology teachers. An edit mode activated by a password in the preferences of AR-
natomy may show an additional icon on each label. A tap in the activated edit mode

149



7. Future Work

redirects to an activity allowing the user to add multimedia content or textual notes
for other users to view. Juanes et al. [203] state that learning with mobile devices can
have an ubiquitous character, immediate student-teacher interaction, and a lower price.
Further, learning with mobile devices has a greater accessibility and portability through
an Internet connection. Important to note is, the benefits are only inherent when mobile
learning and thoughtful usage is executed, otherwise mobile device usage results in an
Intelligence Quotient (IQ) decline [8, 9, 10]. Mobile learning can comprise collaborative
learning, i.e. experiencing digital enhanced learning material together were teachers can
provide information, answers, or reminders [203]. Users may assess their effectiveness of
learning anatomy [13]. In combination with the user’s self assessment, a participation in
the application development to not only consume but produce mobile AR for learning
[192] becomes possible.

Images as markers for AR are supported by ARCore [22]. Simultaneously up to 20 static
or moving images on a flat object are supported for realtime tracking. User mobile
device movements capturing the images only temporally, when images are out of the
camera view, are supported too by ARCore causing an improved tracking robustness.
Right now, one device can store 1.000 detectable images on its local Database (DB),
which is sufficient for the most macroscopic and regional anatomical structures. Single or
multiple images in anatomical books could be linked via AugmentedImages from ARCore
[22] and serve as marker. When AR anatomy models are rendered above the detected
images, the user has an efficient and practical method for fast translation of learning
environment from textual books into the digital AR content. A small icon printed near
the image identifying the image as augmented is recommended, so users do not capture
unnecessarily unsupported images.

Wang et al. [204] created an application capable of recognizing multiple images, even
from long distances and successfully displaying corresponding Three Dimensional (3D)
models as AR superimposition above the images. Wang et al. [204] had problems in
crowded places due to occlusion, hence only usage with pictures of a book is recommended
by the authors. During AR anatomy rendering started by image recognition, additional
information can be viewed, and the 3D orientation of anatomy structures can be explored
by interaction.

A digital dissection comes with more cognitive envolvement, cognitive engagement, fi-
nancial benefits, and wider accessibility as treated in Subsection 2.1.3. With Computed
Tomography (CT) images and Magnetic Resonance Imaging (MRI) , a digital dissection
on 3D-generated models may become possible. A cut represents the plane or area where
Volume Clipping (VC) is applied on the models created by AR volume segmentation of
CT images or MRI similar to the work of Macedo and Apolinário Jr. [89]. The different
black, white, and greyscale values of CT images or MRI can be used to differentiate
between the background, bones, and soft tissue, and thus, their realistic colouring as
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previously depicted in Figure 3.8. The VC could not only be applied to dissection,
but additionally to the camera stream and clip the users camera-captured anatomy
by rendering CT images or MRI as model clipping planes. The captured background
behind clipped anatomy can be cached beforehand and rendered only when needed [89].
Combined with cinematic rendering of CT images or MRI [143] depicted in Figure 3.8, a
new level of immersion would be created. ARCore’s 3D mesh face mask with 468 vertices
may use few carefully selected points to synchronize the segmentation volume with the
tracked face with rather low computational demand. The Android Neural Networks API
(NNAPI) executes machine learning operations on mobile devices supporting Android 8.1
or higher and is implemented in the programming language C. NNAPI is desinged to be
a base for high level machine learning networks, which build and train neuronal networks
[205]. ARnatomy is developed to support Android 8 or higher, so the Neural Networks
API (NNAPI) introduced with Android 8.1 can be utilized for future releases. The
NNAPI can be used as an overall improvement in Head Pose Estimation (HPE) by using
state of the art works [104, 105, 108]. Probably body pose estimation state of the art
detection approaches [133, 134, 135, 136, 137, 138, 139, 140], which ought to be imple-
mented directly in the Android Realm and not as third-party software, could be added too.

Own written code could have better performance than third-party software due to the
lower overhead in the application with the operating system Android. The requirements
of all involved body pose estimation approaches must be verified with the capabilities of
NNAPI before their implementation can start. With NNAPI, the supported anatomical
region of the human body may be extended from the head to the full body. A free multiple
human landmark detection framework originating in conflating multiple scientific papers
[133, 134, 135] into one is OpenPose [133]. Body pose estimation, food pose estimation,
hand pose estimation, and head pose estimation of multiple people in one image or frame
are fully supported including frontal, up, down, and side views as depicted in Figure 7.1.

Figure 7.1: Detected body and face landmarks in realtime with OpenPose [133].

Important to note is the invariancy of computational demand, i.e. up to 30 people are
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tracked simultaneously with the same computational demand as tracking only one person.
The programming in C++ can make OpenPose available on mobile devices supporting
Native Development Kit (NDK). Careful research and requirement checking is key to
prevent lagging as experienced with the usage of dlib [92]. The benefit of OpenPose
compared to other recent works [136, 137, 138, 139, 140] is its availability. However,
including OpenPose as third-party C++ extension may be slower than using other body
pose estimation approaches [136, 137, 138, 139, 140] utilizing Convolutional Neuronal
Networks (CNN)s due to the overhead of communication between Java and C++. The
CNNs from all the different works [136, 137, 138, 139, 140] may be implemented with
the dedicated high efficient native Android NNAPI counterbalancing the overhead. A
lot of subtasks in recognition, e.g. lifting Two Dimensional (2D) joint locations into 3D
with approximately 30 % better performance, can still be improved by deep feed-forward
networks for receiving state of the art performance results [137].

Apart from C++ and NNAPI, the “Powerful, efficient, lightweight, embeddable scripting
language Lua supporting procedural programming, object-oriented programming, functional
programming, data-driven programming, and data description” [206] may be considered
as programming language for more performance. The Android operating system can run
Lua scripts with the Luaj Application Programming Interface (API) [207]. Free works on
human pose estimation with feature pyramids in deep CNNs [208] using Lua’s features
are published and achieve the same accuracy with less computational demand as similar
estimation approaches written in other programming languages. As Lua’s binary files do
not exceed the one Mega Byte (MB) mark, it may be used as application size decrement
too. A comparison of benchmarks on the same tasks in Lua as well as C++ on Android
are currently inexistent and hopefully yet to come.

The current implementation scales anatomy models to fit into the corresponding meshes
superimposing the tracked faces. Facial user anatomy proportions may differ from the
standardized Japanese anatomy models used in the Body Parts 3D (BP3D) flat file
collection [4]. Model deformation results in a better model fit for the face mesh, more
realistic rendering, better superimposition, and higher immersion. Many strategies for
adaptive physical model deformation exist. Manteaux et al. [129] give a survey of pro-
posed deformation approaches so far in computer graphics categorized in time-stepping,
freezing, geometric adaptivity of grids, meshes or particles from fluids, deformable objects,
and articulated solids. Several different techniques may be used as the human anatomy
consists of various forms and shapes consisting of different organic tissues as well as
textures.

RenderScript focuses primarily on parallel and secondarily on serial computation of
computational demanding tasks executed with high performance on Android mobile
devices. The execution is distributed on all the available Central Processing Units
(CPUs) and Graphical Processing Units (GPUs) on a device [209]. RenderScript may be
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an excellent choice to outsource the resource management of the complex deformation
processes to multiple CPUs and GPU. GPUs allow a developer to create efficient parallel
computation. With the landmarks of the aforementioned full body estimation, the
deformation boundary [210] of anatomy could be determined by the silhouette of the
body as in the work by Ali-Hamadi et al. [210]. Ali-Hamadi et al. [210] achieve fast
deformation generation for multiple bodies. Deformation can be combined with medical
data or certain animations to create highly realistic and immersive visualizations of
human anatomy, which may be dynamic as a beating heart and breathing lungs [26].
Model animations according to th heart rate give a more astonishing impression and
realism to the visualization resulting presumably in a longer memorization by the learners.

Users with low and high spatial abilities profit from supportive handles facilitating
repositioning and orientation changes of rendered models [13]. Low spatial ability users
gain more profit as their handicap is counterbalanced. Cognitive load needed for spatial
changes is decreased and available for learning. Users with a high spatial ability com-
pleted their tasks faster than users with a high spatial ability but without supportive
handles. Supportive handles should be rendered only on selected models to facilitate the
positioning and to highlight additionally the current selection.

The support of different colour modes for people whose colour vision is impaired may
be considered in the future. Eight percent of the male and 0.5 % of the female world
population suffer from colour illnesses [211]. Tanuwidjaja et al. [211] propose four colour
modes as support for a better colour distinction targeted at colour blind people. The
anatomy model colouring can be implemented accordingly to the major colour deficiencies,
whose spectrums are depicted in Figure 7.2.

Figure 7.2: Normal and impaired colour spectrum [211].

The four modes of Chroma [211] are highlight, contrast, Daltonization, and outline.
Highlighting is simple area selection by the user and the area’s highlighting. Contrast
allows the user to select two colours and the second colour then filtered by the first
colour. Daltonization is a colour spectrum shift for the best colour distinction of a user
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7. Future Work

having colour deficiencies. Outlining outlines all colour regions influenced by the user’s
colourblindness for easier distinction. The IE consisting of the two case studies with
the interview gave interesting insights and promising ideas from the participants on
future application implementations. In the Hierarchy Activity (HA), rendering the head
anatomy transparent in the scene view and rendering only the currently viewed anatomy
with a red material to see the anatomical context would result in a better illustration of
the anatomy location. An option to turn the whole head rendering off would have to
be included to render only one anatomy. If one, some, or all ideas from Chapter 7 are
implemented, another user study may be conducted with the AR analytics framework
[212] to get more insight into the idea’s effects on the usage of ARnatomy.
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APPENDIX A
Appendix

A.1 Body Parts 3D and Foundational Model of Anatomy
Column Names

• Body Parts 3D (BP3D) file [4]: Compatibility version, File ID, Representation ID,
Build-up logic, Concept ID, English name, Bounds (mm), and Volume (cm3)

• Foundational Model of Anatomy (FMA) Comma Separated Values (CSV) [157]:
Class ID, Preferred Label, Synonyms, Definitions, Obsolete, CUI, Semantic Types,
Parents, AAL, AAL ID, abbreviation, action type, adheres to, adjacent, adjacent to,
afferent to, anatomical entity observed, anatomical landmark for, anatomical plane,
anterior to, anteroinferior to, anterolateral to, anteromedial to, anterosuperior
to, AP position, arterial supply, arterial supply of, articulates with, attaches to,
attributed constitutional part, attributed development, attributed part, attributed
regional part, author, authority, bounded by, bounds, branch, branch continuity,
branch of, cell appendage type, CMA label, connected to, connecting part, connec-
tion type, constitutional part, constitutional part of, contained in, contains, continu-
ous distally with, continuous inferiorly with, continuous proximally with, continuous
superiorly with, continuous with, contributing author, corresponds to, creator, date
entered modified, days post-fertilization, definition, derives, derives from, develop-
ment type, developmental fusion, developmental stage of, develops from, develops
into, dimension, direct left of, direct right of, distal to, DK Freesurfer, drains into, ef-
ferent to, English equivalent, Eponym, external to, FMAID, forms, Freesurfer ID, full
grown phenotype, fuses with, fusion of, germ origin, gestation age weeks, has anatom-
ical landmark, has boundary, has developmental stage, has dimension, has direct cell
layer, has direct cell shape, has direct number of pairs per nucleus, has direct ploidy,
has inherent 3-D shape, has insertion, has location, has mass, has origin, has projec-
tion, homonym for, homonym of, http://data.bioontology.org/metadata/prefixIRI,
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http://purl.org/dc/elements/1.1/contributor, http://purl.org/dc/elements/1.1/description,
http://purl.org/sig/ont/fma/anatomical_coordinate, http://purl.org/sig/ont/fma/laterality,
inferior to, inferolateral to, inferomedial to, inherent 3-D shape, input from, in-
sertion of, is boundary of, JHU DTI-81, JHU White-Matter Tractography Atlas,
language, lateral to, Latin name TA, left lateral to, left medial to, located in,
location of, lymphatic drainage, lymphatic drainage of, matures from, matures into,
medial to, member, member of, merges with, merging of, modification, modified by,
muscle attachment, name, nerve supply, nerve supply of, nerve supply type, Neu-
rolex, Neurolex ID, NeuroQuant, NN abbreviations, non-English equivalent, nucleus
of origin of, nucleus of termination of, orientation, origin of, other Latin equiva-
lents, outdated meaning, output to, part, part of, part type, partition, percentage,
physical state, PI-RADS v1 16 ID, PI-RADS v1 27 ID, PI-RADS v2 ID, polarity,
posterior to, posteroinferior to, posterolateral to, posteromedial to, posterosuperior
to, preferred name, primary author and curator, primary segmental supply, primary
segmental supply of, projects from, projects to, proximal to, RadLex ID, rank
of tissue, receives attachment from, receives drainage from, receives input from,
receives projection, reference, regional part, regional part of, related developmental
entity, related object, related part, right lateral to, right medial to, RO ID, sec-
ondary segmental supply, secondary segmental supply of, segmental composition,
segmental composition of, segmental contribution from, segmental contribution
to, segmental innervation, segmental supply, segmental supply of, sends output to,
sensory nerve supply, slot synonym, species, state, state of determination, supe-
rior to, superior-inferior position, superolateral to, superomedial to, surrounded
by, surrounds, synonym, TA ID, Talairach, Talairach ID, technical support, term
status, transforms from, transforms into, tributary, tributary continuity, tributary
of, UMLS ID, union, unites with, venous drainage, venous drainage of, view

A.2 Projects and Issues on Github
The following projects were created during this master thesis as aid:

1. augmentedFaceMeshIndices, Google ARCore Sceneform 1.10.0 augmented face
mesh indicies from their .fbx file as pictures [132].

2. fma2sqlite, a bash script converts the Foundational Model of Anatomy (FMA) .csv
file into a minimal SQLite database [157].

3. f2s, Files 2 SQLite (F2S) converts all files in one directory into a SQLite database
[159].

The following issues were created due to found malfunctions during this master thesis:

1. Sceneform Issue 217: Convert mutliple .obj to .sfa and .sfb.
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A.2. Projects and Issues on Github

2. Sceneform Issue 250: Render PreferenceScreen as ViewRenderable.

3. Sceneform Issue 281: Let Renderable implement Serializable or Parcelable.

4. Sceneform Issue 334: [Question][Improvement] ARCore Node implementation [213].

5. Sceneform Issue 387: Video stream changes, background black and white in relation
to distance.

6. Sceneform Issue 613: The .obj Converter fails since version 1.7.0 [142].

7. Sceneform Issue 733: Is it possible to get documentation in Android Studio ? [169].

8. Sceneform Issue 798: Render models behind the Augmented Face Mesh inside the
head [172].

9. Dlib Issue 1621: xlib11-dev, libopenblas-dev, and liblapack-dev installed but not
found [164].

The following issues affected this master thesis:

1. ARCore Issue 89: ARCore Device Support Requests

2. Sceneform Issue 251: Can not make a white background on SceneView.

3. Sceneform Issue 369: The Child Node inside a Room Node is not getting the
callback for the OnTouchListener.

4. Sceneform Issue 563: ArCore - 1.7 Face detection Api for All classification and
landmarks.

5. Sceneform Issue 580: Custom material [174]

6. Sceneform Issue 764: [device support] Nokia 7 Plus (Android 9) is not supported
[176].

7. Dlib Issue 181: Face landmark retrain takes very long time.

8. Dlib Issue 305: Parameters used for training shape predictor.

9. Dlib-Android Issue 49: Question: Is there any way that JNI take bitmap or byte
array of the bitmap and convert to dlib::array2d without openCV?.

10. FMA-Structured Query Language Lite (SQLite) Issue 2: List Index out of Range
error.

11. E-Mail to Bioportal: Warning about invalid entries [156].

One may observe the generation date and the closing date of all issues about ARCore
[22] and Sceneform [23].
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A. Appendix

A.3 Instructions and Questions
All participants had German as their mother language. Naturally the below instructions
and questions in English were given and asked in German to eliminate translation errors
or confusion. The questions are inherited and inspired by Lam et al. [45] and Shipley et
al. [46].

The instructions for the case study cerebellum are:

1. Search for “cerebellum”

2. Go one up, find the “pons”

3. Look at the single “pons” in augmented reality

4. Go back to the face view

5. Find now the “cerebellum” or the “pons”

The instructions for the case study mandible are:

1. Filter everything except the mandible

2. Show its label

3. Go from the label in the detail view

4. Find the “vomer”

5. Show the “vomer” in the face view

The asked questions after the completion of the two case studies:

1. What is your age?

2. What is your gender?

3. What is your profession?

4. How much time do you spent on your mobile device?

5. Primary reason for your mobile device usage?

6. Are you interested in learning anatomy?

7. Is an anatomy learn app interesting for you?
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8. What was your first impression?

9. What was your last impression?

10. Is the app usage understandable? Why?

11. Can the usage of the app be learned? Why?

12. What have you learned about anatomy?

13. To you think the general public could learn anatomy with this app?

14. Would you reuse this app to learn something about anatomy or where anatomy is
located?

15. Would you recommend this app? How?

16. What do you think about the presented anatomy? How do you like it?

17. What would you change with the presented anatomy?

18. What would you change with the interaction?

19. What do you like about the app?

20. What do you dislike about the app?

21. Do you want do say something additionally?
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Glossary

ABI An Application Binary Interface (ABI) connects two binary program modules via
an interface defining how data structures or computational routines are accessed in
a low-level, machine code. The opposite is an Application Programming Interface
(API). 58, 89

API An Application Programming Interface (API) is a particular set of rules and speci-
fications that a software program can follow to access and make use of the services
and resources provided by another particular software program that implements
that API. 40, 51, 81, 152, 169

ARCore ARCore is Google’splatform for building AR experiences. It enables the mobile
device to sense its environment, understand the world, interact with information,
and integrate virtual content into the real world [22]. xi, xiii, 3, 5, 46–49, 54, 55,
57, 59–63, 65–68, 70, 73, 78, 79, 81, 84, 85, 87–100, 103, 104, 110, 111, 113, 116,
124–126, 130, 133, 136, 150, 151, 157, 162, 163

BA Bundle Adjustment (BA) is the optimization of line of sight bundles in a 3D scene
or 3D map recorded by multiple cameras, where each camera can have a different
perspective. 20

BE Back-End (BE) refers in software engineering to the data access layer of a piece
of software, or the physical infrastructure or hardware. The Back-End (BE)
counterpart is the Front-End (FE). 5, 20, 49, 61, 83, 169

boilerplate code In computer programming, boilerplate code or boilerplate refers to
sections of code that have to be included in many places with little or no alteration.
It is often used when referring to languages that are considered verbose, i.e. the
programmer must write a lot of code to execute small tasks. 84, 92

BP3D Body Parts 3D (BP3D) is a free, scientific, digital 3D, anatomical model flat
file collection with multiple versions including an online view of its models named
Anatomography [4]. xi, xiii, 1, 40, 51, 81, 124, 130, 152, 155

BRIEF Binary Robust Independent Elementary Features (BRIEF) is an efficient real-
time feature point descriptor using binary strings. BRIEF is fast to build, compare,
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and achieves a high accuracy despite having high speed, which is gained via moving
from the Euclidean to the Hamming distance for matching purposes [70]. 17, 67,
90, 161

CA A C-Arm (CA) intensifies scanned images, mostly fluoroscopic ones, primarily during
surgical or orthopedic procedures. Figuratively depicted, the patient or object to
be scanned lies inside the recess of the letter C, which is the name origin of the
CA. 38, 162

CCN Cascaded Convolutional Networks (CCNs) are a consecutive interconnection of
single Convolutional Neural Networks (CNNs) without feedback. Thus, the adjective
cascaded in the name of CCN. 42, 57

CNN Convolutional Neural Networks (CNNs) are a class of deep neural networks,
wherein neuron connectivity patterns resemble the organization of an animal visual
cortex. CNNs are designed to require minimal preprocessing. 42, 57, 152, 170

CT Computed Tomography (CT) scans, formerly known as a Computerized Axial To-
mography (CAT) scans, are computer-processed X-ray measurement combinations
taken from different angles to produce cross-sectional (tomographic) images or
virtual slices of specific areas of a scanned object, allowing observers to see into an
object without invasive interference. 29, 50, 150, 162

DVR Direct Volume Rendering (DVR) gets a 3D representation of the volume data
directly. The data is considered to represent a semi-transparent light-emitting
medium, which is used slice by slice for 3D volume generation. 35

EMF An Electromagnetic Field (EMF) is a physical field produced by electrically
charged objects. 39

FAB A Floating Action Button (FAB) performs the primary, or most common, action
on a screen. It appears in front of all screen content, typically as a circular shape
with an icon in its center. In this master thesis, the actions of a FAB are overloaded
depending on the current status. 64, 107, 132, 163

FAST Features from Accelerated Segment Test (FAST) is a very fast high quality corner
detector who uses machine learning and has high repeatability levels “under last
aspect changes for different kinds of features” [68]. 17, 67, 90, 161

FCVP Focus and Context Visualization Paradigm (FCVP) shows the medical data on
the patient’s body as focus region, provides a better perception and immersion of
medical data for the viewer as superimposition than without FCVP. 35, 36, 162

FE Front-End (FE) refers in software engineering to the data presentation layer of a
piece of software, or the physical infrastructure or hardware. The Front-End (FE)
counterpart is the Back-End (BE). 5, 20, 49, 61, 92, 170
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flat file Flat-Files are ordinary, unstructured files on the operating system’s file system.
1, 6, 40, 51–54, 61, 66, 81–84, 98, 125, 152, 162, 163, 169

Flynn effect The Flynn effect is the steadily rise within fluid and crystallized intelli-
gence test scores retrieved in multiple countries throughout the twentieth century.
Research of Bernt Bratsberg and Ole Rogeberg suggests that there is an ongo-
ing reversed Flynn effect, meaning a fall in Intelligence Quotient (IQ) scores,
approximately starting in the final decade of the last millennium [6, 7]. 1

FMA The Foundational Model of Anatomy (FMA) is a mature ontology of anatomy
created by the Structural Informatics Group at the University of Washington [5].
xi, xiii, 1, 52, 81, 107, 130, 155

FPS Frames Per Second (FPS) is the frequency of consecutive images, named frames,
which appear on a display. 24, 88

hooking Hooking is a technique used to alter or augment the behaviour of other software
components by intercepting function calls, messages, or events passed between
software components. Code executing the described behaviour is simply called a
hook [42]. 94, 95

HSV Hue Saturation Value (HSV) is an alternative representation of the Red Green
Blue (RGB) colour model. 70, 163

ICP Iterative Closest Point (ICP) is an algorithm employed to minimize the difference
between two or more point clouds. 20

IDE Integrated Development Environment (IDE) is a software application that provides
comprehensive facilities to computer programmers for software development. An
IDE normally consists of a source code editor, build automation tools, and a
debugger. 48, 59, 94

IMU An Inertial Measurement Unit (IMU) is an electronic device that measures and
reports a body’s specific force, angular rate, and sometimes the magnetic field
surrounding the body, using a combination of accelerometers and gyroscopes,
sometimes also magnetometers. 24

JNI The Java Native Interface (JNI) is a foreign function interface programming frame-
work that enables Java code running in a Java virtual machine (JVM) to call and
to be called by native applications and libraries written in other languages such as
C, C++, and assembly. 47, 58, 86

k-means The K-means clustering is used to minimize the feature point cluster to a
prototype of itself resulting in less computation time [64]. 22, 171
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LBA The idea of the Living Book of Anatomy (LBA) is to capture a user action (limb
movement, speech sound or orofacial movement) with Microsoft Kinect (MK) and
to visualize information about the muscles superimposed onto the user image [74].
32

long-term Long-Term is defined in the Oxford dictionary as occurring over or relating
to a long period of time [20], and is in this master thesis considered to be more
than a month. 3, 21, 27, 28, 69, 120, 140, 141, 145

LSD-SLAM Large Scale Direct - Simultaneous Localization and Mapping (LSD-SLAM)
is a direct monocular SLAM technique: Instead of using landmarks or feature
extraction, it directly operates on image intensities both for tracking and mapping
[73]. 17, 23

LSM Log Structured Merge (LSM) trees are search trees who have a high performance
on indexed big insert volume scenarios. Key Value (KV) pairs are maintained in
two or more separate structures optimized for KV’s underlying storage medium
and data is synchronized between the two or more separate structures in batches.
85

medium-term Medium-Term is defined in the Oxford dictionary as occurring over or
relating to a period of time of moderate length [19], and is in this master thesis
considered to be less than a month but longer as short-term. 3, 27, 28, 69, 120,
140, 141, 145

metaballs In computer graphics, metaballs are organic-looking 3D-dimensional objects.
31, 161

MRI Magnetic Resonance Imaging (MRI) scans are computer-processed Nuclear Mag-
netic Resonance (NMR) measurement combinations taken from different angles
to produce cross-sectional (tomographic) images or virtual slices of specific areas
of a scanned object, allowing the viewer to see into an object without invasive
interference. In comparison to CT, no X-rays are involved, but rather an in-vivo
atom core resonance induced by strong magnet fields eliciting an observable electric
signal used to accumulate a MRI picture. 29, 50, 145, 150, 162

NDK A Native Development Kit (NDK) is used to generate native code bibliographies
from another programming language. 47, 58, 86, 152

NMS Non-Maximum Suppression (NMS) is an edge thinning technique applied to find
the largest edge. 43

NNAPI The Android Neural Networks API (NNAPI) executes machine learning op-
erations on mobile devices supporting Android 8.1 or higher and is implemented
in the programming language C. NNAPI is desinged to be a base for high level
machine learning networks, which build and train neuronal networks [205]. 151
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OAH The Online Anatomical Human (OAH) is a web-based viewer for studying anatomy.
It is based on real human anatomy and incorporates medical image data in linked
2D and 3D views that students can freely interact with [31]. 29

OpenGL Open Graphics Library (OpenGL) is a cross-language, cross-platform API for
rendering 2D and 3D vector graphics. 51, 100

ORB-SLAM Oriented FAST and Rotated BRIEF Simultaneous Localization and Map-
ping (ORB-SLAM) is an approach of constructing or updating a map of an unknown
environment while simultaneously keeping track of an agent’s location within it.
The ORB highlights the oriented extension of the FAST key point detector and
BRIEF descriptor who have high performance at low cost [69]. 17, 67, 90, 161

ORM Object Relational Mapping (ORM) is a programming technique for converting
data between incompatible system types via a virtual object database for object
data conversion and transmission. 45, 53, 54

Phong Phong lighting is an empirical model of the local illumination of points on a
surface. It describes the way a surface reflects light as a combination of the diffuse
reflection on rough surfaces with the specular reflection on shiny surfaces. 67, 68,
163

PLK Pyramidal Lucas-Kanale (PLK) finds the location of a certain picture element
(pixel) area from one image in a sequential image by the area’s intensity. PLK
computes a velocity vector for the area known as optical flow. Window size is
proportional to accuracy and robustness, bigger windows smooth the area, smaller
windows capture more motion. The pyramidal version blurs and shrinks the image
recursively. From the pyramids peak down to the biggest image the standard
Lucas-Kanale is applied and each result is the inital value for the next pyramid
level [66]. 24

RenderScript RenderScript focuses primarily on parallel and secondarily on serial
computation of computational demanding tasks executed with high performance on
Android mobile devices. The execution is distributed on all the available Central
Processing Units (CPUs) and Graphical Processing Units (GPUs) on a device [209].
152

RNN A Residual Neural Network (RNN) builds on pyramidal cells similar to the ones
in the cerebral cortex. RNN utilize skip connections or shortcuts to optionally
jump over one or more pyramidal cells. 34

Scale Drift Scale Drift (SD) is an interpretation change over time legitimately applied
to entries inside a certain scale [72], e.g. a map, model, measure or criterion.
Through scale drift, gathered data differs over time more and more from its ideal
or reality. 21
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SDK Software Development Kit (SDK) is a set of development tools for creating
applications with a certain software, software package, software framework, or
hardware, for and on a certain platform. An SDK can be some files, an API, with
or without documentation or include sophisticated hardware to communicate with
a certain embedded systems. 28, 81

short-term Short-Term is defined in the Oxford dictionary as occurring over or relating
to a short period of time [18], and is in this master thesis considered to be shorter
than a day. 2, 3, 27, 28, 62, 68, 120, 127, 140, 141, 144–147, 172

SQLite Structured Query Language Lite (SQLite) is a public domain library that
contains a relational DB system. It supports most of the SQL language commands
specified in the SQL-92 standard [127]. 45, 53, 81, 157

SRC The Sparse Representation Classification (SRC) is a face recognition classifier
using pixels without feature extraction and the l1 optimization for less influence of
illumination and occlusions [101]. 41

surfel Surface elements (surfels) is in 3D computer graphics an alternative to polygonal
modeling. An object is represented by a dense set of points or viewer-facing discs
holding lighting information. 17

ToF Time of Flight (ToF) cameras measure distances with the time of flight method.
Light impulses are sent and the camera measures the time of an impulse to come
back to the camera from an object. By knowing the speed of light and the flight
time of a light impulse to come back, the distance from the camera to the object
can be calculated. 16

ULOC Uncommented Lines of Code (ULOC) is a software metric used to measure the
programming effort put into a computer program by its uncommented source code
line count. 45

V-SLAM Visual Simultaneous Localization and Mapping (V-SLAM) is a computational
approach of constructing or updating a map of an unknown environment while
simultaneously keeping track of an agent’s location within it. The V highlights the
usage of primarily visual (camera) sensors, because of the increasing ubiquity of
cameras such as those in mobile devices. 19

VC Volume Clipping (VC) selectively disables or enables rendering operations inside a
Region of Interest (RI), which is in practice predominantly the intersection of two
or more overlapping objects. 35, 65, 150

VHP The Visible Human Project (VHP) is an effort to create a detailed data set of
cross-sectional photographs of the human body, in order to facilitate anatomy
visualization applications. 40, 52
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WLAN A Wireless Local Area Network (WLAN) uses wireless communication to create
a wireless computer network, linking two or more devices within an area determined
by the WLAN signal strength. 39
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Acronyms

1D One Dimensional. 11, 12, 14, 161

2D Two Dimensional. xi, xiii, 2, 11–14, 27–30, 35–39, 41, 42, 47, 51, 59, 63, 65, 76–78,
80, 91, 104, 109, 136, 138, 140, 152, 161, 173

3D Three Dimensional. xi, xiii, 2–4, 6, 17–22, 24–30, 32, 35–38, 40–42, 44, 51, 52, 59,
65–67, 69, 72–74, 77, 87, 88, 91, 95–97, 99, 100, 125–127, 129, 136, 138, 140, 141,
144–146, 150–152, 162, 169, 170, 173, 174

ABI Application Binary Interface. 58, 89, Glossary: ABI

AP Anatomy Perspective. xv, 2–4, 49–56, 59, 61, 62, 65, 77, 79, 81, 82, 85, 93, 96, 114,
124, 129, 130, 137, 143, 145, 149

API Application Programming Interface. 40, 44, 45, 51, 53, 56, 58, 61, 81, 86–92, 94,
95, 100, 152, 169, 173, 174, Glossary: API

AR Augmented Reality. xi, xiii, 1–5, 7, 9–21, 23, 25–29, 31–41, 46, 47, 49, 51, 54, 57,
59–69, 73–80, 83, 84, 89, 90, 93–97, 100, 101, 103, 104, 106, 107, 109–112, 114, 115,
117, 119–121, 124–127, 129, 131–133, 136–147, 149, 150, 154, 161–164, 167, 169

AV Augmented Virtuality. 9, 10

AVX Advanced Vector eXtensions. Glossary: AVX

BA Bundle Adjustment. 20, Glossary: BA

BB Bounding Box. 43, 44, 58

BE Back-End. 5, 6, 20, 49, 61, 62, 65, 83, 92, 94, 95, 169, Glossary: BE

BLOB Binary Large Object. 62, 99

BP3D Body Parts 3D. xi, xiii, 1, 5–7, 40, 51–56, 61–63, 66, 68, 69, 79, 81–84, 95, 96,
98, 99, 124–126, 130, 145, 152, 155, 162, 163, 167, Glossary: BP3D

BRIEF Binary Robust Independent Elementary Features. 17, 19, 67, 90, 161, 173, 180,
Glossary: BRIEF
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CA C-Arm. 38, 39, 162, 170, Glossary: CA

CAD Computer Aided Design. 17

CCN Cascaded Convolutional Networks. 42, 43, 57, Glossary: CCN

CNN Convolutional Neuronal Networks. 42–44, 57, 152, Glossary: CNN

CPU Central Processing Unit. 20, 23, 45, 66, 152, 153, 173

CRUD Create, Read, Update and Delete. 9, 45, 46, 53, 54

CSV Comma Separated Values. 83, 155

CT Computed Tomography. 29, 32, 35, 36, 40, 50, 65, 66, 150, 151, 162, 163, 172,
Glossary: CT

DB Database. 1, 3–7, 9, 13, 15, 27, 40, 44–46, 49, 51–57, 61–63, 65, 66, 74–77, 81–85,
92–95, 98–100, 104, 125, 127, 130, 131, 133, 134, 136, 150, 162, 174

DRY Don’t Repeat Yourself. 94, 95

DVR Direct Volume Rendering. 35, Glossary: DVR

EAN European Article Numbering. 11

EMF Electromagnetic Field. 39, Glossary: EMF

ER Entity Relationship. 55, 162

F2S Files 2 SQLite. 84

FA Face Activity. 62, 63, 65–68, 70, 71, 73, 75, 77, 78, 85, 89, 93–95, 99, 100, 107–112,
114–119, 122–124, 129–131, 136, 137, 145, 162–165

FAB Floating Action Button. 64, 65, 67, 74, 75, 79, 107, 108, 110, 111, 132, 163, 164,
Glossary: FAB

FAST Features from Accelerated Segment Test. 17, 19, 67, 90, 161, 173, 180, Glossary:
FAST

FCVP Focus and Context Visualization Paradigm. 36, 162, Glossary: FCVP

FE Front-End. 5, 6, 20, 38, 49, 50, 61, 62, 65, 92, 94, 95, 170, Glossary: FE

FMA Foundational Model of Anatomy. xi, xiii, 1, 5–7, 52, 54–56, 62–64, 76, 78, 81–85,
93, 99, 107, 114, 118, 124, 125, 127, 130, 137, 155, 157, 162, 163, Glossary: FMA

FoV Field of View. 14–16, 161
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FPS Frames Per Second. 24, 88, 100, Glossary: FPS

FTS Full Text Search. 85

GB Gigabyte. 45, 88

GPS Global Positioning System. 14–16

GPU Graphical Processing Unit. 23, 31, 36, 152, 153, 173

HA Hierarchy Activity. 62–67, 70, 74–78, 93, 94, 99, 100, 107–110, 114, 116–119, 122,
123, 126, 129, 131, 136, 137, 154, 162, 163, 165

HDR High Dynamic Range. 68, 100, 126, 163

HMD Head-Mounted Display. 38

HPE Head Pose Estimation. xi, xiii, 3, 4, 7, 9, 34, 36, 37, 40–44, 49, 51, 57–60, 63, 66,
73, 81, 85–91, 93, 95, 99, 103–105, 124, 129, 131, 144, 145, 151, 164

HSV Hue Saturation Value. 70, 71, 163, Glossary: HSV

ICP Iterative Closest Point. 20, Glossary: ICP

ID Identification. 48, 55, 82, 93, 125

IDE Integrated Development Environment. 48, 59, 94, Glossary: IDE

IE Informal Evaluation. 5–7, 103, 104, 106, 120, 129, 131, 132, 135, 138–140, 142,
144–147, 149, 154

IMU Inertial Measurement Unit. 24, Glossary: IMU

IQ Intelligence Quotient. 1, 150, 171

ISO International Organization for Standardization. 56

JNI Java Native Interface. 47, 58, 59, 86, 87, Glossary: JNI

KISS Keep It Simple, Stupid. 94

KLT Kanade-Lucas-Tomasi. 13

KV Key Value. 85, 172

LBA Living Book of Anatomy. 32, Glossary: LBA

LSD-SLAM Large Scale Direct - Simultaneous Localization and Mapping (LSD-SLAM).
17, 23, Glossary: LSD-SLAM
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LSM Log Structured Merge. 85, Glossary: LSM

MB Mega Byte. 84, 88, 89, 104, 152

MK Microsoft Kinect. 32, 36, 172

MRI Magnetic Resonance Imaging. 29, 35, 36, 40, 50, 65, 66, 145, 150, 151, 162, 172,
Glossary: MRI

NDK Native Development Kit. 47, 58, 59, 86, 87, 89, 152, Glossary: NDK

NMS Non-Maximum Suppression. 43, 44, Glossary: NMS

NNAPI Neural Networks API. 151, 152, Glossary: NNAPI

NNC Nearest Neighbour Classification. 41

OAB Open Anatomy Browser. 29

OAH Online Anatomical Human. 29, Glossary: OAH

OpenGL Open Graphics Library. 51, 100, Glossary: OpenGL

ORB-SLAM Oriented FAST and Rotated BRIEF Simultaneous Localization and Map-
ping. 17, 19–24, 39, 67, 90, 161, Glossary: V-SLAM

ORM Object Relational Mapping. 45, 46, 53, 54, Glossary: FMA

PEP Performance, Energy consumption, and Programming effort. 46

pixel picture element. 19, 23, 24, 34, 35, 41, 43, 44, 58, 80, 87, 173, 174

PK Primary Key. 55, 56, 83

PLK Pyramidal Lucas-Kanale. 24, Glossary: PLK

POJO Plain Old Java Object. Glossary: POJO

PR Point of Reference. 11, 52, 79, 93, 96, 97, 134, 139, 162

QR Quick Response. 11–13, 57, 161

RAM Random Access Memory. 45, 66, 88

RCT Randomized Controlled Trial. 141

RGB Red Green Blue. 35, 44, 70, 171

RGBD Red Green Blue Depth. 20, 23, 39, 145
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RI Region of Interest. 33, 174

RNN Residual Neural Network. 34, Glossary: RNN

ROM Read Only Memory. 45

SA Single Activity. 62, 63, 65–67, 75–79, 94, 99–101, 107, 109–111, 117, 121–123, 126,
129, 131, 136–138, 145, 162–164

SD Scale Drift (SD). 21, 22, Glossary: Scale Drift

SDK Software Development Kit. 28, 46, 48, 81, Glossary: SDK

SE(3) Special Euclidean Group. Glossary: SE(3)

SFB SceneForm Binary. 61

SQLite Structured Query Language. 45, 46, 53–57, 61, 81–85, 94, 95, 157, Glossary:
SQLite

SRC Sparse Representation Classification. 41, Glossary: SRC

surfel surface element. 17, Glossary: surfel

SVG Scalable Vector Graphics. 79, 80

ToF Time of Flight. 16, Glossary: ToF

UAI Universal Anatomy Index. 56, 57

UE User Experience. 2, 4, 6, 10, 12, 18, 61–63, 73, 89, 104, 106, 112, 136

UI User Interface. 4, 6, 28, 50, 58, 61, 64, 75, 79, 80, 99, 107, 110, 114, 121, 138, 139,
167

ULOC Uncommented Lines of Codes. 45, 46, Glossary: ULOC

UML Unified Modeling Language. 49, 65, 92, 162, 164

UP User Performance. 105, 138

UPC Universal Product Code. 11

UPS United Parcel Service. 11

V-SLAM Visual Simultaneous Localization and Mapping. 19–21, 23, 24, 38, 46, 47,
Glossary: V-SLAM

VC Volume Clipping. 35, 36, 65, 150, 151, Glossary: VC
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VHP Visible Human Project. 40, 52, Glossary: VHP

VR Virtual Reality. 1, 2, 9, 27, 30

WLAN Wireless Local Area Network. 39, Glossary: WLAN
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